• 1.

    Tran, N. H. T., Trinh, K. T. L., Lee, J.-H., Yoon, W. J. & Ju, H. Reproducible enhancement of fluorescence by bimetal mediated surface plasmon coupled emission for highly sensitive quantitative diagnosis of double-stranded DNA. Small 14, 1801385 (2018).

    Article  CAS  Google Scholar 

  • 2.

    Yousefi, H., Ali, M. M., Su, H.-M., Filipe, C. D. M. & Didar, T. F. Sentinel wraps: real-time monitoring of food contamination by printing DNAzyme probes on food packaging. ACS Nano 12, 3287–3294 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Liu, P. et al. Fluorescence-enhanced bio-detection platforms obtained through controlled ‘step-by-step’ clustering of silver nanoparticles. Nanoscale 10, 848–855 (2018).

    PubMed  Article  Google Scholar 

  • 4.

    Markov, A. et al. Engineering of neuron growth and enhancing cell-chip communication via mixed SAMs. ACS Appl. Mater. Interfaces 10, 18507–18514 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Fehrenbacher, L. et al. NSABP B-47/NRG oncology phase III randomized trial comparing adjuvant chemotherapy with or without trastuzumab in high-risk invasive breast cancer negative for HER2 by FISH and with IHC 1+ or 2. J. Clin. Oncol. 38, 444–453 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Shima, T. & Uemura, S. Molecular dynamics revealed by single-molecule FRET measurement. Make Life Visible 105–113, https://doi.org/10.1007/978-981-13-7908-6_10 (2020).

  • 8.

    Liang, Y., Huang, X., Yu, R., Zhou, Y. & Xiong, Y. Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs. Anal. Chim. Acta 936, 195–201 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Jeong, Y., Kook, Y.-M., Lee, K. & Koh, W.-G. Metal enhanced fluorescence (MEF) for biosensors: general approaches and a review of recent developments. Biosens. Bioelectron. 111, 102–116 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Fothergill, S. M., Joyce, C. & Xie, F. Metal enhanced fluorescence biosensing: from ultra-violet towards second near-infrared window. Nanoscale 10, 20914–20929 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Lakowicz, J. R. et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133, 1308 (2008).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Li, J. F., Li, C. Y. & Aroca, R. F. Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 46, 3962–3979 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Chen, Y., Munechika, K. & Ginger, D. S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690–696 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    Li, M., Cushing, S. K. & Wu, N. Plasmon-enhanced optical sensors: a review. Analyst 140, 386–406 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Bharadwaj, P. & Novotny, L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express 15, 14266 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 16.

    Khurgin, J. B. & Sun, G. Enhancement of optical properties of nanoscaled objects by metal nanoparticles. J. Opt. Soc. Am. B 26, B83 (2009).

    CAS  Article  Google Scholar 

  • 17.

    Lakowicz, J. R. et al. Advances in surface-enhanced fluorescence. J. Fluoresc. 14, 425–441 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Geddes, C. D. & Lakowicz, J. R. Metal-enhanced fluorescence. J. Fluoresc. 12, 121–129 (2002).

    Article  Google Scholar 

  • 19.

    Knoblauch, R. & Geddes, C. D. In Reviews in Plasmonics (ed. Geddes, C. D.) vol 2017, 253–283 (Springer International Publishing, 2019).

  • 20.

    Della Ventura, B. et al. Biosensor for point-of-care analysis of immunoglobulins in urine by metal enhanced fluorescence from gold nanoparticles. ACS Appl. Mater. Interfaces 11, 3753–3762 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 21.

    Usukura, E. et al. Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets. Appl. Phys. Lett. 104, 121906 (2014).

    ADS  Article  CAS  Google Scholar 

  • 22.

    Du, B. et al. Diameter-optimized high-order waveguide nanorods for fluorescence enhancement applied in ultrasensitive bioassays. Nanoscale 11, 14322–14329 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Xie, F., Centeno, A., Ryan, M. R., Riley, D. J. & Alford, N. M. Au nanostructures by colloidal lithography: from quenching to extensive fluorescence enhancement. J. Mater. Chem. B 1, 536–543 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Pompa, P. P. et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol. 1, 126–130 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Zhou, L. et al. Enhancement of immunoassay’s fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array. Anal. Chem. 84, 4489–4495 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Flauraud, V. et al. In-plane plasmonic antenna arrays with surface nanogaps for giant fluorescence enhancement. Nano Lett. 17, 1703–1710 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Tabakman, S. M. et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat. Commun. 2, 466 (2011).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Zang, F. et al. Ultrasensitive Ebola virus antigen sensing via 3D nanoantenna arrays. Adv. Mater. 31, 1902331 (2019).

    Article  CAS  Google Scholar 

  • 30.

    Puchkova, A. et al. DNA origami nanoantennas with over 5000-fold fluorescence enhancement and single-molecule detection at 25 μM. Nano Lett. 15, 8354–8359 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Zhang, B., Kumar, R. B., Dai, H. & Feldman, B. J. A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat. Med. 20, 948–953 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Luan, J. et al. Add-on plasmonic patch as a universal fluorescence enhancer. Light Sci. Appl. 7, 29 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 33.

    Glass, R., M ller, M. & Spatz, J. P. Block copolymer micelle nanolithography. Nanotechnology 14, 1153–1160 (2003).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Ghosh, S. K. & Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 36.

    Toma, M. et al. Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet. Phys. Chem. Chem. Phys. 13, 7459 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Oliverio, M., Perotto, S., Messina, G. C., Lovato, L. & De Angelis, F. Chemical functionalization of plasmonic surface biosensors: a tutorial review on issues, strategies, and costs. ACS Appl. Mater. Interfaces 9, 29394–29411 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Vashist, S. K. & Luong, J. H. T. In Handbook of Immunoassay Technologies 19–46, https://doi.org/10.1016/B978-0-12-811762-0.00002-5 (Elsevier, 2018).

  • 39.

    Della Ventura, B. et al. Biosensor surface functionalization by a simple photochemical immobilization of antibodies: experimental characterization by mass spectrometry and surface enhanced Raman spectroscopy. Analyst 144, 6871–6880 (2019).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Zhou, Y. et al. Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Sci. Rep. 6, 35186 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Waitumbi, J., Awinda, G., Rajasekariah, G.-H., Kifude, C. & Martin, S. K. Unified parasite lactate dehydrogenase and histidine-rich protein ELISA for quantification of Plasmodium falciparum. Am. J. Trop. Med. Hyg. 80, 516–522 (2009).

    PubMed  Article  Google Scholar 

  • 42.

    Phillips, M. A. et al. Malaria. Nat. Rev. Dis. Prim. 3, 17050 (2017).

    PubMed  Article  Google Scholar 

  • 43.

    World Health Organization. World Malaria Report 2019. Geneva. (2019).

  • 44.

    Snow, R. W. Global malaria eradication and the importance of Plasmodium falciparum epidemiology in Africa. BMC Med. 13, 23 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Bell, D., Jorgensen, P., Tsuyuoka, R., Chanthap, L. & Rebueno, A. Malaria rapid diagnostic tests in tropical climates: the need for a cool chain. Am. J. Trop. Med. Hyg. 74, 750–754 (2006).

    PubMed  Article  Google Scholar 

  • 46.

    Nambati, E. A. et al. Unclear association between levels of Plasmodium falciparum lactate dehydrogenase (PfLDH) in saliva of malaria patients and blood parasitaemia: diagnostic implications? Malar. J. 17, 9 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Lee, W. S. et al. Simple, rapid, and accurate malaria diagnostic platform using microfluidic-based immunoassay of Plasmodium falciparum lactate dehydrogenase. Nano Converg. 7, 13 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Lee, W., Lee, S. Y., Briber, R. M. & Rabin, O. Self-assembled SERS substrates with tunable surface plasmon resonances. Adv. Funct. Mater. 21, 3424–3429 (2011).

    CAS  Article  Google Scholar 

  • 49.

    Della Ventura, B., Schiavo, L., Altucci, C., Esposito, R. & Velotta, R. Light assisted antibody immobilization for bio-sensing. Biomed. Opt. Express 2, 3223 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Funari, R. et al. Single molecule characterization of UV-activated antibodies on gold by atomic force microscopy. Langmuir 32, 8084–8091 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Neves-Petersen, M. T. et al. High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue. Protein Sci. 11, 588–600 (2009).

    Article  CAS  Google Scholar 

  • 52.

    Della Ventura, B. et al. Effective antibodies immobilization and functionalized nanoparticles in a quartz-crystal microbalance-based immunosensor for the detection of parathion. PLoS ONE 12, e0171754 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 53.

    Iarossi, M. et al. Colorimetric immunosensor by aggregation of photochemically functionalized gold nanoparticles. ACS Omega 3, 3805–3812 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Low, Y. K. et al. Development of an ultrasensitive impedimetric immunosensor platform for detection of plasmodium lactate dehydrogenase. Sensors 19, 2446 (2019).

    CAS  Article  Google Scholar 

  • 55.

    Cheung, Y.-W. et al. Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer. Proc. Natl Acad. Sci. USA 110, 15967–15972 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 56.

    Sternberg, S. R. Biomedical image processing. Computer (Long. Beach Calif.) 16, 22–34 (1983).

    Google Scholar 

  • 57.

    Ross, M. B., Mirkin, C. A. & Schatz, G. C. Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures. J. Phys. Chem. C. 120, 816–830 (2016).

    CAS  Article  Google Scholar 

  • 58.

    Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., Lewis, C. J. & Waggoner, A. S. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug. Chem. 4, 105–111 (1993).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Lucas, E., Knoblauch, R., Combs-Bosse, M., Broedel, S. E. & Geddes, C. D. Low-concentration trypsin detection from a metal-enhanced fluorescence (MEF) platform: Towards the development of ultra-sensitive and rapid detection of proteolytic enzymes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 228, 117739 (2020).

    CAS  Article  Google Scholar 

  • 60.

    Turgut-Balik, D. et al. Cloning, sequence and expression of the lactate dehydrogenase gene from the human malaria parasite, Plasmodium vivax. Biotechnol. Lett. 26, 1051–1055 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Cheung, Y.-W. et al. Aptamer-mediated Plasmodium-specific diagnosis of malaria. Biochimie 145, 131–136 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Mathison, B. A. & Pritt, B. S. Update on malaria diagnostics and test utilization. J. Clin. Microbiol. 55, 2009–2017 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Jimenez, A. et al. Analytical sensitivity of current best-in-class malaria rapid diagnostic tests. Malar. J. 16, 128 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 64.

    Kifude, C. M. et al. Enzyme-linked immunosorbent assay for detection of Plasmodium falciparum histidine-rich protein 2 in blood, plasma, and serum. Clin. Vaccin. Immunol. 15, 1012–1018 (2008).

    CAS  Article  Google Scholar 

  • 65.

    Cheung, Y.-W. et al. Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc. Natl Acad. Sci. USA 117, 16790–16798 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Gbotosho, G. O. et al. Rapid detection of lactate dehydrogenase and genotyping of Plasmodium falciparum in saliva of children with acute uncomplicated malaria. Am. J. Trop. Med. Hyg. 83, 496–501 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Minopoli, A. et al. LSPR-based colorimetric immunosensor for rapid and sensitive 17β-estradiol detection in tap water. Sens. Actuators B Chem. 308, 127699 (2020).

    CAS  Article  Google Scholar 

  • 68.

    Cimafonte, M. et al. Screen printed based impedimetric immunosensor for rapid detection of Escherichia coli in drinking water. Sensors 20, 274 (2020).

    CAS  Article  Google Scholar 

  • 69.

    Martiáñez-Vendrell, X. et al. Quantification of malaria antigens PfHRP2 and pLDH by quantitative suspension array technology in whole blood, dried blood spot and plasma. Malar. J. 19, 12 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 70.

    Neves-Petersen, M. T. et al. Flash Photolysis of Cutinase: Identification and Decay Kinetics of Transient Intermediates Formed upon UV Excitation of Aromatic Residues. Biophys. J. 97, 211–226 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 71.

    Haynes, W. M. CRC Handbook of Chemistry and Physics. CRC Handbook of Chemistry and Physics, https://doi.org/10.1201/9781315380476 (CRC Press, 2016).

  • 72.

    Palik, E. D. Handbook of Optical Constants of Solids. Handbook of Optical Constants of Solids https://doi.org/10.1016/C2009-0-20920-2 (Elsevier, 1985).

  • Source