• 1.

    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    PubMed  Article  Google Scholar 

  • 2.

    Steineck G, Helgesen F, Adolfsson J, Dickman PW, Johansson JE, Norlen BJ, et al. Quality of life after radical prostatectomy or watchful waiting. N. Engl J Med. 2002;347:790–6.

    PubMed  Article  Google Scholar 

  • 3.

    Gunn-Moore FJ, Tilston-Lunel AM, Reynolds PA. Willing to be involved in cancer. Genes. 2016;7:37. https://doi.org/10.3390/genes7070037.

  • 4.

    Gunn-Moore FJ, Welsh GI, Herron LR, Brannigan F, Venkateswarlu K, Gillespie S, et al. A novel 4.1 ezrin radixin moesin (FERM)-containing protein, ‘Willin’. FEBS Lett. 2005;579:5089–94.

    PubMed  Article  Google Scholar 

  • 5.

    Ishiuchi T, Takeichi M. Nectins localize Willin to cell-cell junctions. Genes Cells. 2012;17:387–97.

    PubMed  Article  Google Scholar 

  • 6.

    Ishiuchi T, Takeichi M. Willin and Par3 cooperatively regulate epithelial apical constriction through aPKC-mediated ROCK phosphorylation. Nat Cell Biol. 2011;13:860–6.

    PubMed  Article  Google Scholar 

  • 7.

    Angus L, Moleirinho S, Herron L, Sinha A, Zhang X, Niestrata M, et al. Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP. Oncogene. 2012;31:238–50.

    PubMed  Article  Google Scholar 

  • 8.

    Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    PubMed  Article  Google Scholar 

  • 9.

    Wang J, Hong Y, Shao S, Zhang K, Hong W. FFAR1-and FFAR4-dependent activation of Hippo pathway mediates DHA-induced apoptosis of androgen-independent prostate cancer cells. Biochem Biophys Res Commun. 2018;506:590–6.

    PubMed  Article  Google Scholar 

  • 10.

    Zhou PJ, Xue W, Peng J, Wang Y, Wei L, Yang Z, et al. Elevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the hippo pathway. J Exp Clin Cancer Res. 2017;36:139.

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    The Cancer Genome Atlas. https://www.cancer.gov/tcga.

  • 12.

    Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43.

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Long Q, Xu J, Osunkoya AO, Sannigrahi S, Johnson BA, Zhou W, et al. Global transcriptome analysis of formalin-fixed prostate cancer specimens identifies biomarkers of disease recurrence. Cancer Res. 2014;74:3228–37.

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Haldrup C, Lynnerup AS, Storebjerg TM, Vang S, Wild P, Visakorpi T, et al. Large-scale evaluation of SLC18A2 in prostate cancer reveals diagnostic and prognostic biomarker potential at three molecular levels. Mol Oncol. 2016;10:825–37.

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Haldrup C, Pedersen AL, Ogaard N, Strand SH, Hoyer S, Borre M et al. Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies. Mol Oncol. 2018;12:545–60.

  • 17.

    Strand SH, Switnicki M, Moller M, Haldrup C, Storebjerg TM, Hedegaard J, et al. RHCG and TCAF1 promoter hypermethylation predicts biochemical recurrence in prostate cancer patients treated by radical prostatectomy. Oncotarget. 2017;8:5774–88.

    PubMed  Article  Google Scholar 

  • 18.

    Zhu Y, Qiu P, Ji Y. TCGA-assembler: open-source software for retrieving and processing TCGA data. Nat methods. 2014;11:599–600.

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Zhu Y, Xu Y, Helseth DL, Jr. Gulukota K, Yang S, Pesce LL et al. Zodiac: a comprehensive depiction of genetic interactions in cancer by integrating TCGA data. J Natl Cancer Inst. 2015;107:djv129. https://doi.org/10.1093/jnci/djv129.

  • 20.

    Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, Xiao Y, et al. Copy number alteration burden predicts prostate cancer relapse. Proc Natl Acad Sci USA. 2014;111:11139–44.

    PubMed  Article  Google Scholar 

  • 21.

    Correction for Pourdehnad et al. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proceedings of the National Academy of Sciences. 2013;110:17160.

  • 22.

    Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171:1437–52.e1417.

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Moya IM, Halder G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol. 2019;20:211–26.

    PubMed  Article  Google Scholar 

  • 24.

    Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol. 2015;17:1218–27.

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Riedel M, Berthelsen MF, Bakiri L, Wagner EF, Thomsen MK. Virus delivery of CRISPR guides to the murine prostate for gene alteration. J Vis Exp. 2018;57525. https://doi.org/10.3791/57525.

  • 26.

    Dart DA, Uysal-Onganer P, Jiang WG. Prostate-specific PTen deletion in mice activates inflammatory microRNA expression pathways in the epithelium early in hyperplasia development. Oncogenesis. 2017;6:400.

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Xu Y, Wang K, Yu Q. FRMD6 inhibits human glioblastoma growth and progression by negatively regulating activity of receptor tyrosine kinases. Oncotarget. 2016;7:70080–91.

  • 28.

    Guan C, Chang Z, Gu X, Liu R. MTA2 promotes HCC progression through repressing FRMD6, a key upstream component of hippo signaling pathway. Biochem Biophys Res Commun. 2019;515:112–8.

    PubMed  Article  Google Scholar 

  • 29.

    Visser-Grieve S, Hao Y, Yang X. Human homolog of Drosophila expanded, hEx, functions as a putative tumor suppressor in human cancer cell lines independently of the Hippo pathway. Oncogene. 2012;31:1189–95.

    PubMed  Article  Google Scholar 

  • 30.

    Bocci F, Tripathi SC, Vilchez Mercedes SA, George JT, Casabar JP, Wong PK, et al. NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr Biol. 2019;11:251–63.

    Article  Google Scholar 

  • 31.

    Jolly MK, Tripathi SC, Jia D, Mooney SM, Celiktas M, Hanash SM, et al. Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget. 2016;7:27067–84.

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, et al. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharm Ther. 2019;194:161–84.

    Article  Google Scholar 

  • 33.

    Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Stauffer S, Chen X, Zhang L, Chen Y, Dong J. KIBRA promotes prostate cancer cell proliferation and motility. Febs J. 2016;283:1800–11.

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Nishimoto M, Uranishi K, Asaka MN, Suzuki A, Mizuno Y, Hirasaki M, et al. Transformation of normal cells by aberrant activation of YAP via cMyc with TEAD. Sci Rep. 2019;9:10933.

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Poole CJ, van Riggelen J. MYC-master regulator of the cancer epigenome and transcriptome. Genes. 2017;8:142. https://doi.org/10.3390/genes8050142.

  • 37.

    Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26:5541–52.

    PubMed  Article  Google Scholar 

  • 38.

    Nebbioso A, Carafa V, Conte M, Tambaro FP, Abbondanza C, Martens J, et al. c-Myc modulation and acetylation is a key HDAC inhibitor target in cancer. Clin Cancer Res. 2017;23:2542–55.

    PubMed  Article  Google Scholar 

  • 39.

    Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55.

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018;15:222–34.

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4:209–21.

    PubMed  Article  Google Scholar 

  • 42.

    Brawer MK. Prostatic intraepithelial neoplasia: an overview. Rev Urol. 2005;7:S11–18.

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    PubMed  Article  Google Scholar 

  • 46.

    Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.

    PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Hedegaard J, Thorsen K, Lund MK, Hein AM, Hamilton-Dutoit SJ, Vang S, et al. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS ONE. 2014;9:e98187.

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Feber A, Guilhamon P, Lechner M, Fenton T, Wilson GA, Thirlwell C, et al. Using high-density DNA methylation arrays to profile copy number alterations. Genome Biol. 2014;15:R30.

    PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics. 2014;30:428–30.

    PubMed  Article  Google Scholar 

  • 50.

    The R-project for statistical computing, 2014, https://www.r-project.org.

  • 51.

    Schmidt L, Moller M, Haldrup C, Strand SH, Vang S, Hedegaard J et al. Exploring the transcriptome of hormone-naive multifocal prostate cancer and matched lymph node metastases. Br J Cancer. 2018;119:1527–37.

  • 52.

    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Harrell FE Jr., Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA. 1982;247:2543–6.

    PubMed  Article  Google Scholar 

  • 54.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

    Google Scholar 

  • Source