• 1.

    Robinson, M. C. An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953. Trans. R. Soc. Trop. Med. Hyg. 49, 28–32 (1955).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Sissoko, D. et al. Post-epidemic chikungunya disease on reunion island: course of rheumatic manifestations and associated factors over a 15-month period. Plos Negl. Trop. D 3, e389 (2009).

    Article  Google Scholar 

  • 3.

    McHugh, J. Long-term effects of chikungunya. Nat. Rev. Rheumatol. 14, 62–62 (2018).

    PubMed  Article  Google Scholar 

  • 4.

    Hoarau, J.-J. et al. Persistent chronic inflammation and infection by chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 184, 5914–5927 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Bouquillard, E. & Combe, B. A report of 21 cases of rheumatoid arthritis following Chikungunya fever. A mean follow-up of two years. Jt Bone Spine. Joint Bone Spine 76, 654–657 (2009).

    PubMed  Article  Google Scholar 

  • 6.

    Taubitz, W. et al. Chikungunya fever in travelers: clinical presentation and course. Clin. Infect. Dis. 45, e1–e4 (2007).

    PubMed  Article  Google Scholar 

  • 7.

    Chopra, A., Anuradha, V., Ghorpade, R. & Saluja, M. Acute chikungunya and persistent musculoskeletal pain following the 2006 Indian epidemic: a 2-year prospective rural community study. Epidemiol. Infect. 140, 842–850 (2011).

    PubMed  Article  CAS  Google Scholar 

  • 8.

    Chandak, N. H. et al. Neurological complications of chikungunya virus infection. Neurol. India 57, 177–180 (2009).

    PubMed  Article  Google Scholar 

  • 9.

    Robin, S. et al. Neurologic manifestations of pediatric chikungunya infection. J. Child Neurol. 23, 1028–1035 (2008).

    PubMed  Article  Google Scholar 

  • 10.

    Rajapakse, S., Rodrigo, C. & Rajapakse, A. Atypical manifestations of chikungunya infection. Trans. R. Soc. Trop. Med. Hyg. 104, 89–96 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Tournebize, P., Charlin, C. & Lagrange, M. Manifestations neurologiques du chikungunya: à propos de 23 cas colligés à la Réunion. Rev. Neurol. 165, 48–51 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Pialoux, G., Gaüzère, B.-A., Jauréguiberry, S. & Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7, 319–327 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Rezza, G. et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370, 1840–1846 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Cecilia, D. Current status of dengue and chikungunya in India. Who South-east Asia J. Public Heal. 3, 22 (2014).

    Article  Google Scholar 

  • 15.

    Yactayo, S., Staples, J. E., Millot, V., Cibrelus, L. & Ramon-Pardo, P. Epidemiology of chikungunya in the Americas. J. Infect. Dis. 214, S441–S445 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Kendrick, K., Stanek, D. & Blackmore, C. Notes from the field: transmission of chikungunya virus in the continental United States–Florida. Mmwr. Morbidity Mortal. Wkly. Rep. 63, 1137 (2014).

    Google Scholar 

  • 17.

    Akahata, W. et al. A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nat. Med. 16, 334–338 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Brandler, S. et al. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine 31, 3718–3725 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Hallengärd, D. et al. Novel attenuated chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice. J. Virol. 88, 2858–2866 (2013).

    PubMed  Article  CAS  Google Scholar 

  • 20.

    Tretyakova, I., Hearn, J., Wang, E., Weaver, S. & Pushko, P. DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice. J. Infect. Dis. 209, 1882–1890 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Levitt, N. H. et al. Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine 4, 157–162 (1986).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Gorchakov, R. et al. Attenuation of chikungunya virus vaccine strain 181/clone 25 is determined by two amino acid substitutions in the E2 envelope glycoprotein. J. Virol. 86, 6084–6096 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Edelman, R. et al. Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am. J. Trop. Med. Hyg. 62, 681–685 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Drake, J. W. Rates of spontaneous mutation among RNA viruses. Proc. Natl Acad. Sci. USA 90, 4171–4175 (1993).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Kunkel, T. A. DNA replication fidelity. J. Biol. Chem. 279, 16895–16898 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Coffey, L. L., Beeharry, Y., Bordería, A. V., Blanc, H. & Vignuzzi, M. Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc. Natl Acad. Sci. USA 108, 16038–16043 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Pfeiffer, J. K. & Kirkegaard, K. A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc. Natl Acad. Sci. USA 100, 7289–7294 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Cheung, P. P. H. et al. Generation and characterization of influenza A viruses with altered polymerase fidelity. Nat. Commun. 5, 4794 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Kautz, T. F. et al. Low-fidelity Venezuelan equine encephalitis virus polymerase mutants to improve live-attenuated vaccine safety and efficacy. Virus Evol. 4, vey004 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Riemersma, K. K., Steiner, C., Singapuri, A. & Coffey, L. L. Chikungunya virus fidelity variants exhibit differential attenuation and population diversity in cell culture and adult mice. J. Virol. 93, 345 (2019).

    Google Scholar 

  • 31.

    Pfeiffer, J. K. & Kirkegaard, K. Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. Plos Pathog. 1, e11 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Vignuzzi, M., Wendt, E. & Andino, R. Engineering attenuated virus vaccines by controlling replication fidelity. Nat. Med. 14, 154–161 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Naito, T. et al. Generation of a genetically stable high-fidelity influenza vaccine strain. J. Virol. 91, e01073–16 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Yeh, M. T. et al. Engineering the live-attenuated polio vaccine to prevent reversion to virulence. Cell Host Microbe. https://doi.org/10.1016/j.chom.2020.04.003 (2020).

  • 35.

    Plante, K. et al. Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. Plos Pathog. 7, e1002142 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Plante, K. S., Rossi, S. L., Bergren, N. A., Seymour, R. L. & Weaver, S. C. Extended preclinical safety, efficacy and stability testing of a live-attenuated chikungunya vaccine candidate. PLoS Negl. Trop. Dis. 9, e0004007 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 37.

    Roy, C. J. et al. Chikungunya vaccine candidate is highly attenuated and protects nonhuman primates against telemetrically monitored disease following a single dose. J. Infect. Dis. 209, 1891–1899 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Rossi, S. L. et al. IRES-based Venezuelan equine encephalitis vaccine candidate elicits protective immunity in mice. Virology 437, 81–88 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Rossi, S. L. et al. IREScontaining VEEV vaccine protects Cynomolgus Macaques from IE Venezuelan equine encephalitis virus aerosol challenge. PLoS Negl. Trop. D 9, e0003797 (2015).

    Article  CAS  Google Scholar 

  • 40.

    Guerbois, M. et al. IRES-driven expression of the capsid protein of the Venezuelan Equine encephalitis virus TC-83 vaccine strain increases its attenuation and safety. PLoS Negl. Trop. D 7, e2197 (2013).

    CAS  Article  Google Scholar 

  • 41.

    Volkova, E. et al. IRES-dependent replication of Venezuelan equine encephalitis virus makes it highly attenuated and incapable of replicating in mosquito cells. Virology 377, 160–169 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Davis, N. L. et al. Attenuating mutations in the E2 glycoprotein gene of Venezuelan equine encephalitis virus: construction of single and multiple mutants in a full-length cDNA clone. Virology 183, 20–31 (1991).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Davis, N. L. et al. Positive-strand RNA viruses. Arch. Virol. Suppl 9, 99–109 (1994).

    Google Scholar 

  • 44.

    Davis, N. L. et al. Attenuated mutants of Venezuelan Equine encephalitis virus containing lethal mutations in the PE2 cleavage signal combined with a second-site suppressor mutation in E1. Virology 212, 102–110 (1995).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Milligan, G. N., Schnierle, B. S., McAuley, A. J. & Beasley, D. W. C. Defining a correlate of protection for chikungunya virus vaccines. Vaccine 37, 7427–7436 (2018).

    PubMed  Article  Google Scholar 

  • 46.

    Grubaugh, N. D. et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 20, 8 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Quick, J. et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 12, 1261–1276 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Gotuzzo, E., Yactayo, S. & Córdova, E. Efficacy and duration of immunity after yellow fever vaccination: systematic review on the need for a booster every 10 years. Am. J. Trop. Med. Hyg. 89, 434–444 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Salmona, M. et al. Molecular characterization of the 17D-204 yellow fever vaccine. Vaccine 33, 5432–5436 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Beck, A. S., Wood, T. G., Widen, S. G., Thompson, J. K. & Barrett, A. D. T. Analysis by deep sequencing of discontinued neurotropic yellow fever vaccine strains. Sci. Rep. 8, 13408 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Beck, A. et al. Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing. J. Infect. Dis. 209, 334–344 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Porudominsky, R. & Gotuzzo, E. H. Yellow fever vaccine and risk of developing serious adverse events: a systematic review. Am. J. Public Heal. 42, e75 (2018).

    Google Scholar 

  • 53.

    Stapleford, K. A. et al. Viral polymerase-helicase complexes regulate replication fidelity to overcome intracellular nucleotide depletion. J. Virol. 89, 11233–11244 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 55.

    Yoon, I.-K. et al. High rate of subclinical chikungunya virus infection and association of neutralizing antibody with protection in a prospective cohort in The Philippines. PLoS Negl. Trop. D 9, e0003764 (2015).

    Article  CAS  Google Scholar 

  • 56.

    Pedersen, C. E., Robinson, D. M. & Cole, F. E. Isolation of the vaccine strain of Venezuelan equine encephalomyelitis virus from mosquitoes in Louisiana. Am. J. Epidemiol. 95, 490–496 (1972).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Patterson, E. I. et al. Measuring alphavirus fidelity using non-infectious virus particles. Viruses 12, 546 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  • 58.

    Pauly, M. D., Procario, M. C. & Lauring, A. S. A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses. Elife 6, e26437 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Schuffenecker, I. et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 3, e263 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 60.

    Coffey, L. L. & Vignuzzi, M. Host alternation of chikungunya virus increases fitness while restricting population diversity and adaptability to novel selective pressures. J. Virol. 85, 1025–1035 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Isakov, O. et al. Deep sequencing analysis of viral infection and evolution allows rapid and detailed characterization of viral mutant spectrum. Bioinformatics 31, 2141–2150 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Main, B. J. et al. Vector competence of Aedes aegypti, Culex tarsalis, and Culex quinquefasciatus from California for Zika virus. PLoS Negl. Trop. D 12, e0006524 (2018).

    Article  CAS  Google Scholar 

  • Source