• 1.

    Birling MC, Gofflot F, Warot X. Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol. 2009;561:245–63.

    CAS  Article  Google Scholar 

  • 2.

    Kim H, Kim M, Im SK, Fang S. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim Res. 2018;34:147–59.

    Article  Google Scholar 

  • 3.

    Lewandoski M. Conditional control of gene expression in the mouse. Nat Rev Genet. 2001;2:743–55.

    CAS  Article  Google Scholar 

  • 4.

    Chen D, Wu CF, Shi B, Xu YM. Tamoxifen and toremifene cause impairment of learning and memory function in mice. Pharmacol Biochem Behav. 2002;71:269–76.

    CAS  Article  Google Scholar 

  • 5.

    Roshangar L, Rad JS, Afsordeh K. Maternal tamoxifen treatment alters oocyte differentiation in the neonatal mice: inhibition of oocyte development and decreased folliculogenesis. J Obstet Gynaecol Res. 2010;36:224–31.

    CAS  Article  Google Scholar 

  • 6.

    Heffner CS, Herbert Pratt C, Babiuk RP, Sharma Y, Rockwood SF, Donahue LR, et al. Supporting conditional mouse mutagenesis with a comprehensive Cre characterization resource. Nat Commun. 2012;3:1218.

    Article  Google Scholar 

  • 7.

    Leopold AV, Chernov KG, Verkhusha VV. Optogenetically controlled protein kinases for regulation of cellular signaling. Chem Soc Rev. 2018;47:2454–84.

    CAS  Article  Google Scholar 

  • 8.

    Liu Q, Tucker CL. Engineering genetically-encoded tools for optogenetic control of protein activity. Curr Opin Chem Biol. 2017;40:17–23.

    CAS  Article  Google Scholar 

  • 9.

    Nihongaki Y, Kawano F, Nakajima T, Sato M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol. 2015;33:755–60.

    CAS  Article  Google Scholar 

  • 10.

    Yamada M, Suzuki Y, Nagasaki SC, Okuno H, Imayoshi I. Light control of the Tet gene expression system in mammalian cells. Cell Rep. 2018;25:487–500.e6.

    CAS  Article  Google Scholar 

  • 11.

    Jung H, Kim SW, Kim M, Hong J, Yu D, Kim JH, et al. Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions. Nat Commun. 2019;10:314.

    Article  Google Scholar 

  • 12.

    Kawano F, Okazaki R, Yazawa M, Sato M. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering. Nat Chem Biol. 2016;12:1059–64.

    CAS  Article  Google Scholar 

  • 13.

    Schindler SE, McCall JG, Yan P, Hyrc KL, Li M, Tucker CL, et al. Photo-activatable Cre recombinase regulates gene expression in vivo. Sci Rep. 2015;5:13627.

    Article  Google Scholar 

  • 14.

    Taslimi A, Zoltowski B, Miranda JG, Pathak GP, Hughes RM, Tucker CL. Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase. Nat Chem Biol. 2016;12:425–30.

    CAS  Article  Google Scholar 

  • 15.

    Kawano F, Suzuki H, Furuya A, Sato M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat Commun. 2015;6:6256.

    CAS  Article  Google Scholar 

  • 16.

    Sinha DK, Neveu P, Gagey N, Aujard I, Le Saux T, Rampon C, et al. Photoactivation of the CreER T2 recombinase for conditional site-specific recombination with high spatiotemporal resolution. Zebrafish. 2010;7:199–204.

    CAS  Article  Google Scholar 

  • 17.

    Morikawa K, Furuhashi K, de Sena-Tomas C, Garcia-Garcia AL, Bekdash R, Klein AD, et al. Photoactivatable Cre recombinase 3.0 for in vivo mouse applications. Nat Commun. 2020;11:2141.

    CAS  Article  Google Scholar 

  • 18.

    Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun. 2016;7:10431.

    CAS  Article  Google Scholar 

  • 19.

    Hasegawa Y, Daitoku Y, Sekiguchi K, Tanimoto Y, Mizuno-Iijima S, Mizuno S, et al. Novel ROSA26 Cre-reporter knock-in C57BL/6N mice exhibiting green emission before and red emission after Cre-mediated recombination. Exp Anim. 2013;62:295–304.

    CAS  Article  Google Scholar 

  • 20.

    Lee HS, Cui L, Li Y, Choi JS, Choi JH, Li Z, et al. Influence of light emitting diode-derived blue light overexposure on mouse ocular surface. PLoS ONE. 2016;11:e0161041.

    Article  Google Scholar 

  • 21.

    Akagi K, Sandig V, Vooijs M, Van der Valk M, Giovannini M, Strauss M, et al. Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res. 1997;25:1766–73.

    CAS  Article  Google Scholar 

  • 22.

    Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol. 1998;8:1323–6.

    CAS  Article  Google Scholar 

  • 23.

    DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc. 2009;4:1064–72.

    CAS  Article  Google Scholar 

  • 24.

    Suda T, Liu D. Hydrodynamic gene delivery: its principles and applications. Mol Ther. 2007;15:2063–9.

    CAS  Article  Google Scholar 

  • 25.

    Werfel S, Jungmann A, Lehmann L, Ksienzyk J, Bekeredjian R, Kaya Z, et al. Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovasc Res. 2014;104:15–23.

    CAS  Article  Google Scholar 

  • 26.

    Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double-fluorescent Cre reporter mouse. Genesis. 2007;45:593–605.

    CAS  Article  Google Scholar 

  • 27.

    Prigge JR, Wiley JA, Talago EA, Young EM, Johns LL, Kundert JA, et al. Nuclear double-fluorescent reporter for in vivo and ex vivo analyses of biological transitions in mouse nuclei. Mamm Genome. 2013;24:389–99.

    CAS  Article  Google Scholar 

  • 28.

    Song J, Xu Y, Hu X, Choi B, Tong Q. Brain expression of Cre recombinase driven by pancreas-specific promoters. Genesis. 2010;48:628–34.

    CAS  Article  Google Scholar 

  • 29.

    Wicksteed B, Brissova M, Yan W, Opland DM, Plank JL, Reinert RB, et al. Conditional gene targeting in mouse pancreatic ss-Cells: analysis of ectopic Cre transgene expression in the brain. Diabetes. 2010;59:3090–8.

    CAS  Article  Google Scholar 

  • 30.

    Delerue F, White M, Ittner LM. Inducible, tightly regulated and non-leaky neuronal gene expression in mice. Transgenic Res. 2014;23:225–33.

    CAS  Article  Google Scholar 

  • 31.

    Dobrovolsky VN, Heflich RH. On the use of the T-REx tetracycline-inducible gene expression system in vivo. Biotechnol Bioeng. 2007;98:719–23.

    CAS  Article  Google Scholar 

  • 32.

    Liu X, Zhou Q, Lin H, Wu J, Wu Z, Qu S, et al. The protective effects of blue light-blocking films with different shielding rates: a rat model study. Transl Vis Sci Technol. 2019;8:19.

    CAS  Article  Google Scholar 

  • 33.

    Vicente-Tejedor J, Marchena M, Ramirez L, Garcia-Ayuso D, Gomez-Vicente V, Sanchez-Ramos C, et al. Removal of the blue component of light significantly decreases retinal damage after high intensity exposure. PLoS ONE. 2018;13:e0194218.

    Article  Google Scholar 

  • 34.

    Yamagishi K, Kirino I, Takahashi I, Amano H, Takeoka S, Morimoto Y, et al. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy. Nat Biomed Eng. 2019;3:27–36.

    CAS  Article  Google Scholar 

  • 35.

    Nihongaki Y, Furuhata Y, Otabe T, Hasegawa S, Yoshimoto K, Sato M. CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat Methods. 2017;14:963–6.

    CAS  Article  Google Scholar 

  • 36.

    Nihongaki Y, Otabe T, Ueda Y, Sato M. A split CRISPR-Cpf1 platform for inducible genome editing and gene activation. Nat Chem Biol. 2019;15:882–8.

    CAS  Article  Google Scholar 

  • Source