• 1.

    Grötter, L. G., Cattaneo, L., Marini, P. E., Kjelland, M. E. & Ferré, L. B. Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post-thaw quality optimization. Reprod. Domest. Anim. 54, 655–665 (2019).

    PubMed  Google Scholar 

  • 2.

    Pukazhenthi, B. S. Saving wild ungulate diversity through enhanced management and sperm cryopreservation. Fertil. Dev. 28, 1133–1144 (2016).

    Google Scholar 

  • 3.

    Rozati, H., Handley, T. & Jayasena, C. N. Process and pitfalls of sperm cryopreservation. J. Clin. Med. 6, pii: E89 (2017).

  • 4.

    Tournaye, H., Dohle, G. R. & Barratt, C. L. Fertility preservation in men with cancer. Lancet 384, 1295–1301 (2014).

    PubMed  Google Scholar 

  • 5.

    Hezavehei, M. et al. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod. Biomed. Online. 37, 327–339 (2018).

    CAS  PubMed  Google Scholar 

  • 6.

    Amidi, F., Pazhohan, A., Shabani Nashtaei, M., Khodarahmian, M. & Nekoonam, S. The role of antioxidants in sperm freezing: A review. Cell Tissue Bank. 17, 745–756 (2016).

  • 7.

    Rego, J. P. et al. Proteomic analysis of seminal plasma and sperm cells and their associations with semen freezability in Guzerat bulls. J. Anim. Sci. 94, 5308–5320 (2016).

    CAS  PubMed  Google Scholar 

  • 8.

    Kumar, A., Prasad, J. K., Srivastava, N. & Ghosh, S. K. Strategies to minimize various stress-related freeze-thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreserv. Biobank. 17, 603–612 (2019).

    CAS  PubMed  Google Scholar 

  • 9.

    Thurston, L. M., Watson, P. F., Mileham, A. J. & Hol, W. V. Morphologically distinct sperm subpopulations defined by Fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. J. Androl. 22, 382–394 (2001).

    CAS  PubMed  Google Scholar 

  • 10.

    Moura, A. A. et al. Seminal plasma proteins and metabolites: Effects on sperm function and potential as fertility markers. Anim. Reprod. 15, 691–702 (2018).

    Google Scholar 

  • 11.

    Camargo, M., Intasqui, P. & Bertolla, R. P. Understanding the seminal plasma proteome and its role in male fertility. Basic Clin. Androl. 28, 6 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Plante, G., Prud’homme, B., Fan, J., Lafleur, M. & Manjunath, P. Evolution and function of mammalian binder of sperm proteins. Cell Tissue Res. 363, 105–127 (2016).

    CAS  Google Scholar 

  • 13.

    Pini, T. et al. Binder of sperm proteins protect ram spermatozoa from freeze-thaw damage. Cryobiology 82, 78–87 (2018).

    CAS  PubMed  Google Scholar 

  • 14.

    Moura, A. A., Chapman, D. A. & Killian, G. J. Proteins of the accessory sex glands associated with the oocyte-penetrating capacity of cauda epididymal sperm from holstein bulls of documented fertility. Mol. Reprod. Dev. 74, 214–222 (2007).

    CAS  PubMed  Google Scholar 

  • 15.

    Viana, A. G. A. et al. Proteomic landscape of seminal plasma associated with dairy bull fertility. Sci. Rep. 8, 16323 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Fernández-Gago, R., Domínguez, J. C. & Martínez-Pastor, F. Seminal plasma applied post-thawing affects boar sperm physiology: A flow cytometry study. Theriogenology 80, 400–410 (2013).

    PubMed  Google Scholar 

  • 17.

    Torres, M. A. et al. Seminal plasma arising from the whole boar sperm-rich fraction increases the stability of sperm membrane after thawing. J. Anim. Sci. 94, 1906–1912 (2016).

    CAS  PubMed  Google Scholar 

  • 18.

    Yeste, M. et al. The increase in phosphorylation levels of serine residues of protein HSP70 during holding time at 176C is concomitant with a higher cryotolerance of boar spermatozoa. PLoS ONE 9, e90887 (2014).

    ADS  PubMed  Google Scholar 

  • 19.

    Rodríguez-Villamil, P. et al. Purification of binder of sperm protein 1 (BSP1) and its effects on bovine in vitro embryo development after fertilization with ejaculated and epididymal sperm. Theriogenology 85, 540–554 (2016).

    PubMed  Google Scholar 

  • 20.

    Gonçalves, R. F., Chapman, D. A., Bertolla, R. P., Eder, I. & Killian, G. J. Pre-treatment of cattle semen or oocytes with purified milk osteopontin affects in vitro fertilization and embryo development. Anim. Reprod. Sci. 108, 375–383 (2008).

    PubMed  Google Scholar 

  • 21.

    Hao, Y. et al. Osteopontin improves in vitro development of porcine embryos and decreases apoptosis. Mol. Reprod. Dev. 75, 291–298 (2008).

    CAS  PubMed  Google Scholar 

  • 22.

    Boccia, L. et al. Osteopontin improves sperm capacitation and in vitro fertilization efficiency in buffalo (Bubalus bubalis). Theriogenology 80, 212–217 (2013).

    CAS  PubMed  Google Scholar 

  • 23.

    Jiang, H. Y. et al. The growth arrest specific gene (gas6) protein is expressed in abnormal embryos sired by male golden hamsters with accessory sex glands removed. Anat. Embryol. (Berl). 203, 343–355 (2001).

    CAS  PubMed  Google Scholar 

  • 24.

    Chan, O. C., Chow, P. H., O, W. S. Total ablation of paternal accessory sex glands curtails developmental potential in preimplantation embryos in the golden hamster. Anat. Embryol. (Berl). 204, 117–122 (2001).

  • 25.

    Sharkey, D. J., Macpherson, A. M., Tremellen, K. P. & Robertson, S. A. Seminal plasma differentially regulates inflammatory cytokine gene expression in human cervical and vaginal epithelial cells. Mol. Hum. Reprod. 13, 491–501 (2007).

    CAS  PubMed  Google Scholar 

  • 26.

    Chen, J. C. et al. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts. Hum. Reprod. 29, 1255–1270 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Maranesi, M. et al. New insights on a NGF-mediated pathway to induce ovulation in rabbits (Oryctolagus cuniculus). Biol. Reprod. 98, 634–643 (2018).

    PubMed  Google Scholar 

  • 28.

    Ratto, M. H., Berland, M. A., Silva, M. E. & Adams, G. New insights of the role of β-NGF in the ovulation mechanism of induced ovulating species. Reproduction 157, R199–R207 (2019).

    CAS  PubMed  Google Scholar 

  • 29.

    Gilany, K., Minai-Tehrani, A., Savadi-Shiraz, E., Rezadoost, H. & Lakpour, N. Exploring the human seminal plasma proteome: An unexplored gold mine of biomarker for male infertility and male reproduction disorder. J. Reprod. Infertil. 16, 61–71 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Schirmer, E. C., Yates, J. R. 3rd. & L, Gerace. MudPIT: A powerful proteomics tool for discovery. Discov. Med. 3, 38–39 (2003).

  • 31.

    Moura, A. A., Chapman, D. A., Koc, H. & Killian, G. J. A comprehensive proteomic analysis of the accessory sex gland fluid from mature Holstein bulls. Anim. Reprod. Sci. 98, 169–188 (2007).

    CAS  PubMed  Google Scholar 

  • 32.

    Kelly, V. C. et al. Characterization of bovine seminal plasma by proteomics. Proteomics 6, 5826–5833 (2006).

    CAS  PubMed  Google Scholar 

  • 33.

    Rego, J. P. et al. Seminal plasma proteome of electroejaculated Bos indicus bulls. Anim. Reprod. Sci. 148, 1–17 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Harshan, H. M. et al. Identification of PDC-109-like protein(s) in buffalo seminal plasma. Anim. Reprod. Sci. 115, 306–311 (2009).

    CAS  PubMed  Google Scholar 

  • 35.

    Bergeron, A., Villemure, M., Lazure, C. & Manjunath, P. Isolation and characterization of the major proteins of ram seminal plasma. Mol. Reprod. Dev. 71, 461–470 (2005).

    CAS  PubMed  Google Scholar 

  • 36.

    Souza, C. E. et al. Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams. J. Proteomics. 75, 4436–4456 (2012).

    CAS  PubMed  Google Scholar 

  • 37.

    Villemure, M., Lazure, C. & Manjunath, P. Isolation and characterization of gelatin-binding proteins from goat seminal plasma. Reprod. Biol. Endocrinol. 1, 39 (2003).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Calvete, J. J., Reinert, M., Sanz, L. & Topfer-Petersen, E. Effect of glycosylation on the heparin-binding capability of boar and stallion seminal plasma proteins. J. Chromatogr. A. 711, 167–173 (1995).

    CAS  PubMed  Google Scholar 

  • 39.

    Bezerra, M. M. et al. Major seminal plasma proteome of rabbits and associations with sperm quality. Theriogenology 128, 156–166 (2019).

    CAS  PubMed  Google Scholar 

  • 40.

    Suarez, S. S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 363, 185–194 (2016).

    PubMed  Google Scholar 

  • 41.

    Moura, A. A., Koc, H., Chapman, D. A. & Killian, G. J. Identification of accessory sex gland fluid proteins as related to fertility indexes of dairy bulls: A proteomic approach. J. Androl. 27, 201–211 (2006).

    CAS  PubMed  Google Scholar 

  • 42.

    Brito, M. F. et al. Label-free proteome of water buffalo (Bubalus bubalis) seminal plasma. Reprod. Domest. Anim. 53, 1243–1246 (2018).

    CAS  PubMed  Google Scholar 

  • 43.

    Melo, L. M. et al. Buck (Capra hircus) genes encode new members of the spermadhesin family. Mol. Reprod. Dev. 75, 8–16 (2008).

    PubMed  Google Scholar 

  • 44.

    González-Cadavid, V. et al. Seminal plasma proteins of adult boars and correlations with sperm parameters. Theriogenology 82, 697–707 (2014).

    PubMed  Google Scholar 

  • 45.

    Santos, E. A. et al. Protein profile of the seminal plasma of collared peccaries (Pecari tajacu Linnaeus, 1758). Reproduction 147, 753–764 (2014).

    CAS  PubMed  Google Scholar 

  • 46.

    Töpfer-Petersen, E. et al. Spermadhesins: A new protein family. Facts, hypotheses and perspectives. Andrologia. 30, 217–24 (1998).

  • 47.

    Ekhlasi-Hundrieser, M. et al. Spermadhesin AQN1 is a candidate receptor molecule involved in the formation of the oviductal sperm reservoir in the pig. Biol. Reprod. 73, 536–545 (2005).

    CAS  Google Scholar 

  • 48.

    Zigo, M., Jonakova, V., Manaskova-Postlerova, P., Kerns, K. & Sutovsky, P. Ubiquitin-proteasome system participates in the de-aggregation of spermadhesin and DQH protein during boar sperm capacitation. Reproduction. 157, 283–295 (2019).

  • 49.

    Janiszewska, E. & Kratz, E. M. Could the glycosylation analysis of seminal plasma clusterin become a novel male infertility biomarker?. Mol. Reprod. Dev. 87, 515–524 (2020).

    CAS  PubMed  Google Scholar 

  • 50.

    Humphreys, D. T., Carver, J. A., Easterbrook-Smith, S. B. & Wilson, M. R. Clusterin has chaperone-like activity similar to that of small heat shock proteins. J. Biol. Chem. 274, 6875–6881 (1999).

    CAS  PubMed  Google Scholar 

  • 51.

    Merlotti, A. et al. Fucosylated clusterin in semen promotes the uptake of stress-damaged proteins by dendritic cells via DC-SIGN. Hum. Reprod. 30, 1545–1556 (2015).

    CAS  PubMed  Google Scholar 

  • 52.

    Boe-Hansen, G. B. et al. Seminal plasma proteins and their relationship with percentage of morphologically normal sperm in 2-year-old Brahman (Bos indicus) bulls. Anim. Reprod. Sci. 162, 20–30 (2015).

    CAS  PubMed  Google Scholar 

  • 53.

    Bailey, R. & Griswold, M. D. Clusterin in the male reproductive system: localization and possible function. Mol. Cell Endocrinol. 151, 17–23 (1999).

    CAS  PubMed  Google Scholar 

  • 54.

    Aquino-Cortez, A. et al. Proteomic characterization of canine seminal plasma. Theriogenology 95, 178–186 (2017).

    CAS  PubMed  Google Scholar 

  • 55.

    Denhardt, D. T. The third international conference on osteopontin and related proteins, San Antonio, Texas. Calcif Tissue Int. 74, 213–219 (2002).

    Google Scholar 

  • 56.

    Bouleftour, W. et al. The role of the SIBLING, Bone Sialoprotein in skeletal biology: Contribution of mouse experimental genetics. Matrix Biol. 52(54), 60–77 (2016).

    PubMed  Google Scholar 

  • 57.

    Souza, C. E., Moura, A. A., Monaco, E. & Killian, G. J. Binding patterns of bovine seminal plasma proteins A1/A2, 30 kDa and osteopontin on ejaculated sperm before and after incubation with isthmic and ampullary oviductal fluid. Anim. Reprod. Sci. 105, 72–89 (2008).

    CAS  PubMed  Google Scholar 

  • 58.

    Erikson, D. W., Way, A. L., Chapman, D. A. & Killian, G. J. Detection of osteopontin on Holstein bull spermatozoa, in cauda epididymal fluid and testis homogenates, and its potential role in bovine fertilization. Reproduction 133, 909–917 (2008).

    Google Scholar 

  • 59.

    Monaco, E. et al. Effect of osteopontin (OPN) on in vitro embryo development in cattle. Theriogenology 71, 450–457 (2009).

    CAS  PubMed  Google Scholar 

  • 60.

    Cancel, A. M., Chapman, D. A. & Killian, G. J. Osteopontin is the 55-kilodalton fertility-associated protein in Holstein bull seminal plasma. Biol Reprod. 57, 1293–1301 (1997).

    CAS  PubMed  Google Scholar 

  • 61.

    Edwards, D. R., Handsley, M. M. & Pennington, C. J. The ADAM metalloproteinases. Mol. Aspects Med. 29, 258–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    McCauley, T. C., Zhang, H. M., Bellin, M. E. & Ax, R. L. Identification of a heparin-binding protein in bovine seminal fluid as tissue inhibitor of metalloproteinases-2. Mol. Reprod. Dev. 58, 336–341 (2001).

    CAS  PubMed  Google Scholar 

  • 63.

    Belardin, L. B. et al. Semen levels of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinases (TIMP) protein families members in men with high and low sperm DNA fragmentation. Sci. Rep. 9, 10234 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 64.

    du Plessis, S. S., Agarwal, A., Mohanty, G. & van der Linde, M. Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use?. Asian J. Androl. 17, 230–235 (2015).

    PubMed  Google Scholar 

  • 65.

    Moura, A. A., Chapman, D. A., Koc, H. & Killian, G.J. Proteins of the cauda epididymal fluid associated with fertility of mature dairy bulls. J. Androl. 27, 534–541 (2006).

  • 66.

    Kishimoto, Y., Hiraiwa, M. & O’Brien, J. S. Saposins: Structure, function, distribution, and molecular genetics. J. Lipid Res. 33, 1255–1267 (1992).

    CAS  PubMed  Google Scholar 

  • 67.

    Morales, C. R., Zhao, Q., El-Alfy, M. & Suzuki, K. Targeted disruption of the mouse prosaposin gene affects the development of the prostate gland and other male reproductive organs. J. Androl. 21, 765–775 (2000).

    CAS  PubMed  Google Scholar 

  • 68.

    Amann, R. P., Seidel, G. E. Jr. & Brink, Z. A. Exposure of thawed frozen bull sperm to a synthetic peptide before artificial insemination increases fertility. J. Androl. 20, 42–46 (1999).

    CAS  PubMed  Google Scholar 

  • 69.

    Amann, R. P., Shabanowitz, R. B., Huszar, G. & Broder, S. J. Increased in vitro binding of fresh and frozen-thawed human sperm exposed to a synthetic peptide. J. Androl. 20, 655–660 (1999).

    CAS  PubMed  Google Scholar 

  • 70.

    Hirohashi, N. & Yanagimachi, R. Sperm acrosome reaction: Its site and role in fertilization. Biol. Reprod. 99, 127–133 (2018).

    PubMed  Google Scholar 

  • 71.

    Tanaka, K. The proteasome: Overview of structure and functions. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 12–36 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Sutovsky, P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: Killing three birds with one stone. Microsc. Res. Tech. 61, 88–102 (2003).

    CAS  PubMed  Google Scholar 

  • 73.

    Lippert, T. H., Seeger, H., Schieferstein, G. & Voelter, W. Immunoreactive ubiquitin in human seminal plasma. J. Androl. 14, 130–131 (1993).

    CAS  PubMed  Google Scholar 

  • 74.

    Baska, K. M. et al. Mechanism of extracellular ubiquitination in the mammalian epididymis. J. Cell Physiol. 215, 684–696 (2008).

    CAS  PubMed  Google Scholar 

  • 75.

    Rickard, J. P. et al. Variation in seminal plasma alters the ability of ram spermatozoa to survive cryopreservation. Reprod. Fertil. Dev. 28, 516–523 (2016).

    CAS  PubMed  Google Scholar 

  • 76.

    Greube, A., Müller, K., Töpfer-Petersen, E., Herrmann, A. & Müller, P. Influence of the bovine seminal plasma protein PDC-109 on the physical state of membranes. Biochemistry 40, 8326–8334 (2001).

    CAS  PubMed  Google Scholar 

  • 77.

    Kim, J. S., Soucek, J., Matousek, J. & Raines, R. T. Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities. Biochem. J. 308, 547–550 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Codognoto, V. M. et al. Functional insights into the role of seminal plasma proteins on sperm motility of buffalo. Anim. Reprod. Sci. 195, 251–258 (2018).

    CAS  PubMed  Google Scholar 

  • 79.

    Rickard, J. P. et al. The identification of proteomic markers of sperm freezing resilience in ram seminal plasma. J. Proteomics. 126, 303–311 (2015).

    CAS  PubMed  Google Scholar 

  • 80.

    Moura, A. A., Souza, C. E., Stanley, B. A., Chapman, D. A. & Killian, G. J. Proteomics of cauda epididymal fluid from mature Holstein bulls. J. Proteomics. 73, 2006–2020 (2010).

    CAS  PubMed  Google Scholar 

  • 81.

    Einspanier, R. et al. Localization and concentration of a new bioactive acetic seminal fluid protein (aSFP) in bulls (Bos taurus). J. Reprod. Fertil. 98, 241–244 (1993).

    CAS  PubMed  Google Scholar 

  • 82.

    Schöneck, C., Braun, J. & Einspanier, R. Sperm viability is influenced in vitro by the bovine seminal protein aSFP: Effects on motility, mitochondrial activity and lipid peroxidation. Theriogenology 45, 633–642 (1996).

    PubMed  Google Scholar 

  • 83.

    Robert, M. & Gagnon, C. Purification and characterization of the active precursor of a human sperm motility inhibitor secreted by the seminal vesicles: Identity with semenogelin. Biol. Reprod. 55, 813–821 (1996).

    CAS  PubMed  Google Scholar 

  • 84.

    Schröter, F., Müller, K., Müller, P., Krause, E. & Braun, B. C. Recombinant expression of porcine spermadhesin AWN and its phospholipid interaction: Indication for a novel lipid binding property. Reprod. Domest. Anim. 52, 585–595 (2017).

    PubMed  Google Scholar 

  • 85.

    Rhee, S. G. Overview on peroxiredoxin. Mol Cells. 39, 1–5 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 86.

    Knoops, B., Argyropoulou, V., Becker, S., Ferté, L. & Kuznetsova, O. Multiple roles of peroxiredoxins in inflammation. Mol. Cells. 39, 60–64 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 87.

    Ismail, T., Kim, Y., Lee, H., Lee, D. S. & Lee, H. S. Interplay between mitochondrial peroxiredoxins and ROS in cancer development and progression. Int. J. Mol. Sci. 20, 4407 (2019).

    CAS  PubMed Central  Google Scholar 

  • 88.

    Agarwal, A., Durairajanayagam, D., Halabi, J., Peng, J. & Vazquez-Levin, M. Proteomics, oxidative stress and male infertility. Rev. Reprod. Biomed. Online. 29, 32–58 (2014).

    CAS  Google Scholar 

  • 89.

    Hamada, A. et al. Two-dimensional differential in-gel electrophoresis-based proteomics of male gametes in relation to oxidative stress. Fertil. Steril. 99, 1216–1226, e2 (2013).

  • 90.

    Sharma, R. et al. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod. Biol. Endocrinol. 11, 48 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 91.

    Matsuki, S., Sasagawa, I., Iuchi, Y. & Fujii, J. Impaired expression of peroxiredoxin 4 in damaged testes by artificial cryptorchidism. Redox Rep. 7, 276–278 (2002).

    CAS  PubMed  Google Scholar 

  • 92.

    Nagdas, S. K., Buchanan, T. & Raychoudhury, S. Identification of peroxiredoxin-5 in bovine cauda epididymal sperm. Mol. Cell Biochem. 387, 113–121 (2014).

    CAS  PubMed  Google Scholar 

  • 93.

    Kierszenbaum, A. L. Sperm axoneme: A tale of tubulin posttranslation diversity. Mol. Reprod. Dev. 62, 1–3 (2002).

    CAS  PubMed  Google Scholar 

  • 94.

    Inaba, K. Sperm flagella: Comparative and phylogenetic perspectives of protein components. Mol. Hum. Reprod. 17, 524–538 (2011).

    CAS  PubMed  Google Scholar 

  • 95.

    Teixeira, F. K. et al. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat. Cell Biol. 17, 689–696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 96.

    Collins, C. M., Malacrida, B., Burke, C., Kiely, P. A. & Dunleavy, E. M. ATP synthase F1 subunits recruited to centromeres by CENP-A are required for male meiosis. Nat. Commun. 9, 2702 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 97.

    Guo, Y. et al. Proteomics analysis of asthenozoospermia and identification of glucose-6-phosphate isomerase as an important enzyme for sperm motility. J. Proteomics. 208, 103478 (2019).

    CAS  PubMed  Google Scholar 

  • 98.

    Zong, M. et al. Glucose-6-phosphate isomerase promotes the proliferation and inhibits the apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis. Art. Res. Ther. 17, 100 (2015).

    Google Scholar 

  • 99.

    Miki, K. et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. PNAS 101, 16501–16506 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 100.

    Westhoff, D. & Kamp, G. Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa. J. Cell Sci. 110, 1821–1829 (1997).

    CAS  PubMed  Google Scholar 

  • 101.

    Herrero, M. B. et al. Mouse SLLP1, a sperm lysozyme-like protein involved in sperm–egg binding and fertilization. Dev. Biol. 284, 126–142 (2005).

    CAS  PubMed  Google Scholar 

  • 102.

    Fujihara, Y. et al. Sperm equatorial segment protein 1, SPESP1, is required for fully fertile sperm in mouse. J. Cell Sci. 123, 1531–1536 (2010).

    CAS  PubMed  Google Scholar 

  • 103.

    Marín-Briggiler, C. I. et al. Evidence of the presence of calcium/calmodulindependent protein kinase IV in human sperm and its involvement in motility regulation. J. Cell Sci. 118, 2013–2022 (2005).

    PubMed  Google Scholar 

  • 104.

    Zeng, H.-T. & Tulsiani, D. R. P. Calmodulin antagonists differentially affect capacitation-associated protein tyrosine phosphorylation of mouse sperm components. J Cell Sci. 116, 1981–1989 (2003).

    CAS  PubMed  Google Scholar 

  • 105.

    Finkelstein, M., Etkovitz, N. & Breitbart, H. Role and regulation of sperm gelsolin prior to fertilization. J. Biol. Chem. 285, 39702–39709 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 106.

    Luconi, M. et al. Uteroglobin and transglutaminase modulate human sperm functions. J. Androl. 21, 676–688 (2000).

    CAS  PubMed  Google Scholar 

  • 107.

    Jackson, B. C. et al. Update of the human secretoglobin (SCGB) gene superfamily and an example of ‘evolutionary bloom’ of androgenbinding protein genes within the mouse Scgb gene superfamily. Hum. Genom. 6, 691–702 (2000).

    Google Scholar 

  • 108.

    Washburn, M. P., Wolters, D. & Yates, J. R. 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    CAS  PubMed  Google Scholar 

  • 109.

    Pace, M. M., Sullivan, J. J., Elliott, F. I., Graham, E. F. & Coulter, G. H. Effects of thawing temperature, number of spermatozoa and spermatozoal quality on fertility of bovine spermatozoa packaged in 5-ml French straws. J Anim Sci. 53, 693–701 (1981).

  • 110.

    Nagy, S., Jansen, J., Topper, E. K. & Gadella, B. M. A triple-stain flow cytometric method to assess plasma and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 68, 1828–1835 (2003).

    CAS  PubMed  Google Scholar 

  • 111.

    Xu, T. et al. ProLuCID: An improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J. Proteomics. 129, 16–24 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 112.

    Cociorva, D., L. Tabb D. & Yates, J. R. Validation of Tandem Mass Spectrometry Database Search Results Using DTASelect in Current Protocols in Bioinformatics. Unit 13.4 (Baxevanis, A. D. et al.2007).

  • 113.

    Tabb, D. L., McDonald, W. H. & Yates, J. R. III. DTASelect and contrast: Tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res. 1, 21–26 (2002).

  • 114.

    Park, S. K., Venable, J. D., Xu, T. & Yates, J. R. 3rd. A quantitative analysis software tool for mass spectrometry-based proteomics. Nat. Methods. 5, 319–322 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 115.

    SAS Institute Inc. SAS/IML® 14.1 User’s Guide. (SAS Institute Inc, Cary, 2015).

  • 116.

    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

  • Source