• 1.

    Kitagawa, H. et al. Serum growth hormone and insulin-like growth factor-1 concentrations in Japanese black cattle with growth retardation. J. Vet. Med. Sci. 63(2), 167–170 (2001).

    PubMed  CAS  Google Scholar 

  • 2.

    Lupu, F., Terwilliger, J. D., Lee, K., Segre, G. V. & Efstratiadis, A. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev. Biol. 229(1), 141–162 (2001).

    PubMed  CAS  Google Scholar 

  • 3.

    Liu, G., Wei, Y., Wang, Z., Wu, D. & Zhou, A. Effects of dietary supplementation with cysteamine on growth hormone receptor and insulin-like growth factor system in finishing pigs. J. Agric. Food Chem. 56(13), 5422–5427 (2008).

    PubMed  CAS  Google Scholar 

  • 4.

    Sato, T., Hidaka, Y. & Kamimura, S. Sugar supplementation stimulates growth performance in calves with growth retardation. J. Vet. Med. Sci. 72(1), 29–33 (2010).

    PubMed  CAS  Google Scholar 

  • 5.

    Chen, W. S. et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15(17), 2203–2208 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 6.

    Peng, X. D. et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 17(11), 1352–1365 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 7.

    Abuzzahab, M. J. et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N. Engl. J. Med. 349(23), 2211–2222 (2003).

    PubMed  CAS  Google Scholar 

  • 8.

    Chen, T. R. et al. Generation and characterization of Tmeff2 mutant mice. Biochem. Biophys. Res. Commun. 425(2), 189–194 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 9.

    Wang, Y. et al. Inhibitory effect of adenovirus-mediated siRNA-targeting BMPR-IB on UHMWPE-induced bone destruction in the murine air pouch model. Connect. Tissue Res. 53(6), 528–534 (2012).

    PubMed  CAS  Google Scholar 

  • 10.

    Buchmiller-Crair, T. L. et al. Delayed disaccharidase development in a rabbit model of intrauterine growth retardation. Pediatr. Res. 50(4), 520–524 (2001).

    PubMed  CAS  Google Scholar 

  • 11.

    Hayashi, T. T. & Dorko, M. E. A rat model for the study of intrauterine growth retardation. Am. J. Obstet. Gynecol. 158(5), 1203–1207 (1988).

    PubMed  CAS  Google Scholar 

  • 12.

    Rockwell, L. C., Keyes, L. E. & Moore, L. G. Chronic hypoxia diminishes pregnancy-associated DNA synthesis in guinea pig uteroplacental arteries. Placenta 21(4), 313–319 (2000).

    PubMed  CAS  Google Scholar 

  • 13.

    Bassan, H. et al. Experimental intrauterine growth retardation alters renal development. Pediatr. Nephrol. 15(3–4), 192–195 (2000).

    PubMed  CAS  Google Scholar 

  • 14.

    Phillips, I. D. et al. Restriction of fetal growth has a differential impact on fetal prolactin and prolactin receptor mRNA expression. J. Neuroendocrinol. 13(2), 175–181 (2010).

    Google Scholar 

  • 15.

    Kliegman, R. M. Alterations of fasting glucose and fat metabolism in intrauterine growth-retarded newborn dogs. Am. J. Physiol. 256(3 Pt 1), E380-385 (1989).

    PubMed  CAS  Google Scholar 

  • 16.

    Wang, J. J. et al. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J. Nutr. 138(1), 60–66 (2008).

    PubMed  CAS  Google Scholar 

  • 17.

    Liu, C. et al. Intrauterine growth restriction alters the hepatic proteome in fetal pigs. J. Nutr. Biochem. 24(6), 954–959 (2013).

    PubMed  CAS  Google Scholar 

  • 18.

    Yeh, C. S. et al. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis. Cancer Lett. 233(2), 297–308 (2006).

    PubMed  CAS  Google Scholar 

  • 19.

    Villagra, A. et al. Histone deacetylase 3 down-regulates cholesterol synthesis through repression of lanosterol synthase gene expression. J. Biol. Chem. 282(49), 35457–35470 (2007).

    PubMed  CAS  Google Scholar 

  • 20.

    Mahley, R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852), 622–630 (1988).

    ADS  PubMed  CAS  Google Scholar 

  • 21.

    Li, Y. K. et al. Heat stress-responsive transcriptome analysis in the liver tissue of Hu sheep. Genes 10(5), 395 (2019).

    PubMed Central  Google Scholar 

  • 22.

    Oh, J. et al. Temporal stability of the human skin microbiome. Cell 165(4), 854–866 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 23.

    Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11(9), 1650–1667 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 24.

    Sun, L. et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 41(17), e166 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 25.

    Lei, K. et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35(Web Server issue), W345 (2007).

    Google Scholar 

  • 26.

    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44(D1), D279-285 (2016).

    CAS  Google Scholar 

  • 27.

    Ding, W. et al. Domain-oriented functional analysis based on expression profiling. BMC Genom. 3(1), 32 (2002).

    Google Scholar 

  • 28.

    Xue, D. Q. et al. Transcriptome analysis of the Cf-12-mediated resistance response to Cladosporium fulvum in tomato. Front. Plant Sci. 2016, 7 (2012).

    Google Scholar 

  • 29.

    Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11(2), R14 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36(Database issue), D480–D484 (2008).

    PubMed  CAS  Google Scholar 

  • 31.

    Tao, C. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19), 3787–3793 (2005).

    MathSciNet  Google Scholar 

  • 32.

    Peterside, I. E., Selak, M. A. & Simmons, R. A. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am. J. Physiol. Endocrinol. Metab. 285(6), E1258-1266 (2003).

    PubMed  CAS  Google Scholar 

  • 33.

    Thorn, S. R. et al. Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces messenger ribonucleic acid translation initiation and nutrient sensing in fetal liver and skeletal muscle. Endocrinology 150(7), 3021–3030 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 34.

    Cianfarani, S. et al. Effect of intrauterine growth retardation on liver and long-term metabolic risk. Int. J. Obes. 36(10), 1270–1277 (2012).

    CAS  Google Scholar 

  • 35.

    Liu, J. et al. Effects of intrauterine growth retardation and maternal folic acid supplementation on hepatic mitochondrial function and gene expression in piglets. Arch. Anim. Nutr. 66(5), 357–371 (2012).

    PubMed  CAS  Google Scholar 

  • 36.

    Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    PubMed  CAS  Google Scholar 

  • 37.

    Guilleret, I. et al. Imprinting of tumor-suppressor genes in human placenta. Epigenetics 4(1), 62–68 (2009).

    PubMed  CAS  Google Scholar 

  • 38.

    Hsieh, J. C. et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398(6726), 431 (1999).

    ADS  PubMed  CAS  Google Scholar 

  • 39.

    Vranken, J. G. et al. SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab. 20(2), 241–252 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Fazius, F., Shelest, E. & Gebhardt, P. et al. The fungal α-aminoadipate  pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol. Microbiol. 86(6), 1508–1530 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 41.

    Priyadarshini, Y. & Natarajan, K. Reconfiguration of transcriptional control of lysine biosynthesis in candida albicans involves a central role for the Gcn4 transcriptional activator. mSphere1(1), 1–14 (2016).

    Google Scholar 

  • 42.

    Montserrat, P. et al. Adipose triglyceride lipase and hormone-sensitive lipase are involved in fat loss in JunB-deficient mice. Endocrinology 152(7), 2678–2689 (2011).

    Google Scholar 

  • 43.

    Raffaello, A. et al. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. J. Cell Biol. 191(1), 101–113 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 44.

    Davideau, J. L., Sahlberg, C., Thesleff, I. & Berdal, A. EGF receptor expression in mineralized tissues: an in situ hybridization and immunocytochemical investigation in rat and human mandibles. Connect. Tissue Res. 32(1–4), 47–53 (1995).

    PubMed  CAS  Google Scholar 

  • 45.

    Nawachi, K. et al. Tyrosine kinase-type receptor ErbB4 in chondrocytes: interaction with connective tissue growth factor and distribution in cartilage. FEBS Lett. 528(1–3), 109–113 (2002).

    PubMed  CAS  Google Scholar 

  • 46.

    Chien, H. H., Lin, W. L. & Cho, M. I. Down-regulation of osteoblastic cell differentiation by epidermal growth factor receptor. Calcif. Tissue Int. 67(2), 141–150 (2000).

    PubMed  CAS  Google Scholar 

  • 47.

    Maria, S. et al. Mice humanised for the EGF receptor display hypomorphic phenotypes in skin, bone and heart. Development 130(19), 4515 (2003).

    Google Scholar 

  • 48.

    Chen, S. & Li, Y. Current perspectives on the roles of PPARa in nonalcoholic fatty liver disease and hepatocarcinogenesis. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi/Chin. J. Hepatol. 22(9), 718–720 (2014).

    CAS  Google Scholar 

  • 49.

    Zhang, J. Q. et al. Relationship between PPARa mRNA expression and mitochondrial respiratory function and ultrastructure of the skeletal muscle of patients with COPD. Bioengineered 8(6), 723–731 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 50.

    Chen, N. B. et al. Chinese yellow cattle PPARA gene: analyses of expression, polymorphism and trait association. Czech. J. Anim. Sci. 63(12), 473–482 (2018).

    CAS  Google Scholar 

  • 51.

    Li, W. Y., Liu, Y., Gao, C. F., Lan, X. Y. & Wu, X. F. A novel duplicated insertion/deletion (InDel) of the CPT1a gene and its effects on growth traits in goat. Anim. Biotechnol. (48), 1–9 (2019).

  • 52.

    Stephensen, C. B., Borowsky, A. D. & Lloyd, K. C. Disruption of Rxra gene in thymocytes and T lymphocytes modestly alters lymphocyte frequencies, proliferation, survival and T helper type 1/type 2 balance. Immunology 121(4), 484–498 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 53.

    Gentili, S., Morrison, J. L. & McMillen, I. C. Intrauterine growth restriction and differential patterns of hepatic growth and expression of IGF1, PCK2, and HSDL1 mRNA in the sheep fetus in late gestation. Biol. Reprod. 80(6), 1121–1127 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 54.

    Loczenski-Brown, D. M. et al. Effect of adeno-associated virus (AAV)-mediated overexpression of PEPCK-M (Pck2) on Clenbuterol-induced muscle growth. PLoS ONE 14(6), e0218970.52 (2019).

    Google Scholar 

  • 55.

    Derrien, T. et al. Knowles DG: The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22(1775), 1789 (2012).

    Google Scholar 

  • 56.

    Monica, B. et al. Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol. Cell. Biol. 35(4), 728 (2015).

    Google Scholar 

  • 57.

    Legnini, I., Morlando, M., Mangiavacchi, A., Fatica, A. & Bozzoni, I. A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol. Cell 53(3), 506–514 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 58.

    Mueller, A. C. et al. MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol. Cell. Biol. 35(3), 498–513 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Yue, Y. et al. A lncRNA promotes myoblast proliferation by up-regulating GH1. In vitro cellular & developmental biology. Animal 53(8), 699–705 (2017).

    CAS  Google Scholar 

  • 60.

    Sahu, A., Singhal, U. & Chinnaiyan, A. M. Long noncoding RNAs in cancer: from function to translation. Trends Cancer 1(2), 93–109 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell 146(3), 353–358 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 62.

    Tay, Y., Rinn, J. & Pandolfi, P. P. The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483), 344–352 (2014).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 63.

    Sylvain, F. et al. Transcriptome and chromatin structure annotation of liver, CD4 and CD8 T cells from four livestock species. Biorxiv Prepr. https://doi.org/10.1101/316091 (2018).

    Article  Google Scholar 

  • 64.

    Lagarde, J. et al. Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq). Nat. Commun. 7, 12339 (2016).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 65.

    Wagner, E. F. & Nebreda, A. R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9(8), 537–549 (2009).

    PubMed  CAS  Google Scholar 

  • 66.

    Roux, P. P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68(2), 320–344 (2004).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 67.

    Hallen, L. C. et al. Antiproliferative activity of the human IFN-alpha-inducible protein IFI44. J. Interferon Cytokine Res. 27(8), 675–680 (2007).

    PubMed  CAS  Google Scholar 

  • 68.

    Nzeusseu Toukap, A. et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 56(5), 1579–1588 (2007).

    PubMed  CAS  Google Scholar 

  • Source