• 1.

    Eldin, C. et al. From Q Fever to Coxiella burnetii infection: a paradigm change. Clin. Microbiol. Rev.30, 115–190 (2017).

    PubMed  Google Scholar 

  • 2.

    Ruiz, S. & Wolfe, D. N. Vaccination against Q fever for biodefense and public health indications. Front. Microbiol.5, 1–7 (2014).

    Google Scholar 

  • 3.

    Raoult, D. et al. Q fever 1985–1998. Clinical and epidemiologic features of 1,383 infections. Medicine79, 109–123 (2000).

    CAS  PubMed  Google Scholar 

  • 4.

    Parker, N. R., Barralet, J. H. & Bell, A. M. Seminar Q fever. Lancet367, 679–688 (2006).

    PubMed  Google Scholar 

  • 5.

    Q Fever in the United States. https://www.cdc.gov/qfever/stats/index.html. (Accessed 20 September 2018)

  • 6.

    Madariaga, M. G., Rezai, K., Trenholme, G. M. & Weinstein, R. A. Q fever: A biological weapon in your backyard. Lancet Infect. Dis.3, 709–721 (2003).

    PubMed  Google Scholar 

  • 7.

    Control, D. et al. Public health assessment of potential biological terrorism agents. Emerg. Infect. Dis.8, 225–230 (2002).

    Google Scholar 

  • 8.

    Woldehiwet, Z. Q fever (coxiellosis): Epidemiology and pathogenesis. Res. Vet. Sci.77, 93–100 (2004).

    PubMed  Google Scholar 

  • 9.

    Opsteegh, M., de Heer, L., van den Berg, H. & van der Giessen, J. Inactivation or clearance of Coxiella burnetii in rat serum samples to enable safe serological testing. J. Basic Microbiol.53, 796–798 (2013).

    CAS  PubMed  Google Scholar 

  • 10.

    Marmion, B. P. et al. Vaccine prophylaxis of abattoir-associated Q fever: eight years’ experience in Australian abattoirs. Epidemiol Infect.104, 275–287 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Chiu, C. K. & Durrheim, D. N. A review of the efficacy of human Q fever vaccine registered in Australia. N. S. W. Public Health Bull.18, 133–136 (2007).

    PubMed  Google Scholar 

  • 12.

    Schoffelen, T. et al. Limited humoral and cellular responses to Qfever vaccination in older adults with risk factors for chronic Q fever. J. Infect.67, 565–573 (2013).

    PubMed  Google Scholar 

  • 13.

    Kazár, J., Brezina, R., Palanová, A., Tvrdá, B. & Schramek, S. Immunogenicity and reactogenicity of a Q fever chemovaccine in persons professionally exposed to Q fever in Czechoslovakia. Bull. World Health Organ.60, 389–394 (1982).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Maurin, M. & Raoult, D. Q fever. Clin. Microbiol. Rev.12, 518–553 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Isken, L. D. et al. Implementation of a Q fever vaccination program for high-risk patients in the Netherlands. Vaccine31, 2617–2622 (2013).

    PubMed  Google Scholar 

  • 16.

    CSL Biotherapies. A guide to Q fever and Q fever vaccination. (2009).

  • 17.

    Chen, C. et al. Identification of CD4+ T cell epitopes in C. burnetii antigens targeted by antibody responses. PLoS ONE6, e17712 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Chen, C. et al. A systematic approach to evaluate humoral and cellular immune responses to Coxiella burnetii immunoreactive antigens. Clin. Microbiol. Infect.15, 156–157 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Reeves, P. M., Paul, S. R., Sluder, A. E., Brauns, T. A. & Poznansky, M. C. Q-vaxcelerate: a distributed development approach for a new Coxiella burnetii vaccine. Hum. Vaccines Immunother.13, 2977–2981 (2017).

    Google Scholar 

  • 20.

    Xiong, X. et al. Identification of Coxiella burnetii CD8 + T-cell epitopes and delivery by attenuated listeria monocytogenes as a vaccine vector in a C57BL/6 Mouse model. J. Infect. Dis.215, 1580–1589 (2017).

    CAS  PubMed  Google Scholar 

  • 21.

    Moise, L. et al. Immunization with cross-conserved H1N1 influenza CD4+T-cell epitopes lowers viral burden in HLA DR3 transgenic mice. Hum. Vaccines Immunother.9, 2060–2068 (2013).

    CAS  Google Scholar 

  • 22.

    Bounds, C. E. et al. An immunoinformatics-derived DNA vaccine encoding human class II T cell epitopes of Ebola virus, Sudan virus, and Venezuelan equine encephalitis virus is immunogenic in HLA transgenic mice. Hum. Vaccines Immunother.13, 2824–2836 (2017).

    Google Scholar 

  • 23.

    Shattuck, W. M. C. et al. Partial pathogen protection by tick-bite sensitization and epitope recognition in peptide-immunized HLA DR3 transgenic mice. Hum. Vaccines Immunother.10, 3048–3059 (2014).

    Google Scholar 

  • 24.

    Hussain-Yusuf, H. et al. An analysis of Q fever patients 6 years after an outbreak in Newport, Wales, UK. QJM105, 1067–1073 (2012).

    CAS  PubMed  Google Scholar 

  • 25.

    Teunis, P. F. M. et al. Time-course of antibody responses against Coxiella burnetii following acute Q fever. Epidemiol. Infect.141, 62–73 (2013).

    CAS  PubMed  Google Scholar 

  • 26.

    Andoh, M. et al. T cells are essential for bacterial clearance, and gamma interferon, tumor necrosis factor alpha, and B cells are crucial for disease development in Coxiella burnetii infection in mice. Infect. Immun.75, 3245–3255 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Zhang, G. et al. Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J. Immunol.179, 8372–8380 (2007).

    CAS  PubMed  Google Scholar 

  • 28.

    Read, A. J., Erickson, S. & Harmsen, A. G. Role of CD4+ and CD8+ T cells in clearance of primary pulmonary infection with Coxiella burnetii. Infect. Immun.78, 3019–3026 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Ledbetter, L. et al. MHC-II-restricted, CD4+ T cell-dependent and -independent mechanisms are required for vaccine-induced protective immunity against Coxiella burnetii. Infect. Immun. https://doi.org/10.1128/IAI.00824-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Strauss, G., Vignali, D. A., Schönrich, G. & Hämmerling, G. J. Negative and positive selection by HLA-DR3(DRw17) molecules in transgenic mice. Immunogenetics40, 104–108 (1994).

    CAS  PubMed  Google Scholar 

  • 31.

    Arricau-Bouvery, N. et al. Effect of vaccination with phase I and phase II Coxiella burnetii vaccines in pregnant goats. Vaccine23, 4392–4402 (2005).

    CAS  PubMed  Google Scholar 

  • 32.

    Samusik, N., Good, Z., Spitzer, M. H., Davis, K. L. & Nolan, G. P. Automated mapping of phenotype space with single-cell data. Nat. Methods13, 493–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Zou, H. & Hastie, T. Regularization and variable selection via the elastic nets. J. R. Stat. Soc. B67, 301–320 (2005).

    MathSciNet  MATH  Google Scholar 

  • 34.

    van der Maaten, L. & Hinton, G. Visualizing data using {t-SNE}. J. Mach. Learn. Res.9, 2579–2605 (2008).

    MATH  Google Scholar 

  • 35.

    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res.19, 1639–1645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Shaham, U. et al. Removal of batch effects using distribution-matching residual networks. Bioinformatics33, 2539–2546 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Amodio, M. et al. Exploring single-cell data with deep multitasking neural networks. Nat. Methods16, 1139–1145 (2019).

    CAS  PubMed  Google Scholar 

  • 38.

    Van Gassen, S., Gaudilliere, B., Angst, M. S., Saeys, Y. & Aghaeepour, N. CytoNorm: a normalization algorithm for cytometry data. Cytometry A https://doi.org/10.1002/cyto.a.23904 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Gautreau, G. et al. SPADEVizR: an R package for visualization, analysis and integration of SPADE results. Bioinformatics33, 779–781 (2017).

    CAS  PubMed  Google Scholar 

  • 40.

    Aghaeepour, N. et al. An immune clock of human pregnancy. Sci. Immunol.2, 1–21 (2017).

    Google Scholar 

  • 41.

    Bamezai, A. Mouse Ly-6 proteins and their extended family: markers of cell differentiation and regulators of cell signaling. Arch. Immunol. Ther. Exp. (Warsz)52, 255–266 (2004).

    CAS  Google Scholar 

  • 42.

    Gumley, T. P., McKenzie, I. F. & Sandrin, M. S. Tissue expression, structure and function of the murine Ly-6 family of molecules. Immunol. Cell Biol.73, 277–296 (1995).

    CAS  PubMed  Google Scholar 

  • 43.

    DeLong, J. H. et al. Cytokine- and TCR-mediated regulation of T cell expression of Ly6C and Sca-1. J. Immunol. https://doi.org/10.4049/jimmunol.1701154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Marshall, H. D. et al. Differential Expression of Ly6C and T-bet distinguish effector and memory Th1 CD4+Cell properties during viral infection. Immunity35, 633–646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Lee, J. Y. et al. Phenotypic and functional changes of peripheral Ly6C+T regulatory cells driven by conventional effector T cells. Front. Immunol.9, 1–15 (2018).

    Google Scholar 

  • 46.

    Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med.192, 557–564 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Yamanouchi, S. et al. A T cell activation antigen, Ly6C, induced on CD4+Th1 cells mediates an inhibitory signal for secretion of IL-2 and proliferation in peripheral immune responses. Eur. J. Immunol.28, 696–707 (1998).

    CAS  PubMed  Google Scholar 

  • 48.

    Hu, Z., Blackman, M. A., Kaye, K. M. & Usherwood, E. J. Functional heterogeneity in the CD4+ T cell response to murine γ-herpesvirus 68. J. Immunol.194, 2746–2756 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Hänninen, A., Maksimow, M., Alam, C., Morgan, D. J. & Jalkanen, S. Ly6C supports preferential homing of central memory CD8+ T cells into lymph nodes. Eur. J. Immunol.41, 634–644 (2011).

    PubMed  Google Scholar 

  • 50.

    Walunas, T. L., Bruce, D. S., Dustin, L., Loh, D. Y. & Bluestone, J. A. Ly-6C is a marker of memory CD8+ T cells. J. Immunol.155, 1873–1883 (1995).

    CAS  PubMed  Google Scholar 

  • 51.

    Reynolds, G. & Haniffa, M. Human and mouse mononuclear phagocyte networks: a tale of two species?. Front. Immunol.6, 330 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell100, 655–669 (2000).

    CAS  PubMed  Google Scholar 

  • 53.

    Rubtsova, K., Rubtsov, A. V., van Dyk, L. F., Kappler, J. W. & Marrack, P. T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance. Proc. Natl. Acad. Sci. USA110, E3216–E3224 (2013).

    CAS  PubMed  Google Scholar 

  • 54.

    Mayer, K. D. et al. Cutting edge: T-bet and IL-27R are critical for in vivo IFN-gamma production by CD8 T cells during infection. J. Immunol.067723, 693–697 (2008).

    Google Scholar 

  • 55.

    Lazarevic, V., Glimcher, L. H. & Lord, G. M. T-bet: a bridge between innate and adaptive immunity. Nat. Rev. Immunol.13, 777–789 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Harms Pritchard, G. et al. Diverse roles for T-bet in the effector responses required for resistance to infection. J. Immunol.194, 1131–1140 (2015).

    CAS  PubMed  Google Scholar 

  • 57.

    Mohr, E. et al. IFN-{gamma} produced by CD8 T cells induces T-bet-dependent and -independent class switching in B cells in responses to alum-precipitated protein vaccine. Proc. Natl. Acad. Sci. USA107, 17292–17297 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 58.

    Faugaret, D. et al. Granulomatous response to Coxiella burnetii, the agent of Q fever: the lessons from gene expression analysis. Front. Cell. Infect. Microbiol.4, 1–8 (2014).

    Google Scholar 

  • 59.

    Thompson, L. F., Ruedi, J. M., Glass, A., Low, M. G. & Lucas, A. H. Antibodies to 5’-nucleotidase (CD73), a glycosyl-phosphatidylinositol-anchored protein, cause human peripheral blood T cells to proliferate. J. Immunol.143, 1815–1821 (1989).

    CAS  PubMed  Google Scholar 

  • 60.

    Airas, L., Niemelä, J. & Jalkanen, S. CD73 engagement promotes lymphocyte binding to endothelial cells via a lymphocyte function-associated antigen-1-dependent mechanism. J. Immunol.165, 5411–5417 (2000).

    CAS  PubMed  Google Scholar 

  • 61.

    Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med.204, 1257–1265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood110, 1225–1232 (2007).

    CAS  PubMed  Google Scholar 

  • 63.

    Takenaka, M. C., Robson, S. & Quintana, F. J. Regulation of the T Cell response by CD39. Trends Immunol.37, 427–439 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Allard, B., Longhi, M. S., Robson, S. C. & Stagg, J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol. Rev.276, 121–144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Regateiro, F. S., Cobbold, S. P. & Waldmann, H. CD73 and adenosine generation in the creation of regulatory microenvironments. Clin. Exp. Immunol.171, 1–7 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    van Schaik, E. J., Chen, C., Mertens, K., Weber, M. M. & Samuel, J. E. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat. Rev. Microbiol.11, 561–573 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Scott, G. H., Williams, J. C. & Stephenson, E. H. Animal models in Q fever: pathological responses of inbred mice to phase I Coxiella burnetii. J. Gen. Microbiol.133, 691–700 (1987).

    CAS  PubMed  Google Scholar 

  • 68.

    Kong, Y. C. et al. HLA-DRB1 polymorphism determines susceptibility to autoimmune thyroiditis in transgenic mice: definitive association with HLA-DRB1*0301 (DR3) gene. J. Exp. Med.184, 1167–1172 (1996).

    CAS  PubMed  Google Scholar 

  • 69.

    Omsland, A. & Heinzen, R. A. Life on the outside: the rescue of Coxiella burnetii from its host cell. Annu. Rev. Microbiol.65, 111–128 (2011).

    CAS  PubMed  Google Scholar 

  • 70.

    Kersh, G. J., Oliver, L. D., Self, J. S., Fitzpatrick, K. A. & Massung, R. F. Virulence of pathogenic Coxiella burnetii strains after growth in the absence of host cells. Vector Borne Zoonotic Dis.11, 1433–1438 (2011).

    PubMed  Google Scholar 

  • 71.

    Baeten, L. A. et al. Standardized guinea pig model for Q fever vaccine reactogenicity. PLoS ONE13, e0205882 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 72.

    Reeves, P. M. et al. Application and utility of mass cytometry in vaccine development. FASEB J https://doi.org/10.1096/fj.201700325 (2017).

    Article  PubMed  Google Scholar 

  • 73.

    Nowicka, M. et al. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Research6, 748 (2017).

    PubMed  Google Scholar 

  • 74.

    Bagwell, C. B. et al. Automated data cleanup for mass cytometry. Cytometry. A https://doi.org/10.1002/cyto.a.23926 (2019).

    Article  PubMed  Google Scholar 

  • 75.

    R Core Team. R: A Language and Environment for Statistical Computing. (2013).

  • 76.

    Kolde, R. pheatmap: Pretty Heatmaps. (2019).

  • 77.

    Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust : an R package for determining the relevant number of clusters in a data set. J. Stat. Softw.61, 1–35 (2014).

    Google Scholar 

  • 78.

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw.28, 1–26 (2008).

    Google Scholar 

  • 79.

    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics30, 2811–2812 (2014).

    CAS  PubMed  Google Scholar 

  • Source