• 1.

    Sherwood, O. Relaxin. In The Physiology of Reproduction. (ed Neill E. Ka. J. D.) 861–1009 (Raven Press, New York, 1994).

  • 2.

    Mahendroo, M. Cervical remodeling in term and preterm birth: Insights from an animal model. Reproduction 143, 429–438. https://doi.org/10.1530/REP-11-0466 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Akgul, Y., Holt, R., Mummert, M., Word, A. & Mahendroo, M. Dynamic changes in cervical glycosaminoglycan composition during normal pregnancy and preterm birth. Endocrinology 153, 3493–3503. https://doi.org/10.1210/en.2011-1950 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Ruscheinsky, M., De la Motte, C. & Mahendroo, M. Hyaluronan and its binding proteins during cervical ripening and parturition: Dynamic changes in size, distribution and temporal sequence. Matrix Biol. 27, 487–497. https://doi.org/10.1016/j.matbio.2008.01.010 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Wieslander, C. K. et al. Regulation of elastolytic proteases in the mouse vagina during pregnancy, parturition, and puerperium. Biol. Reprod. 78, 521–528. https://doi.org/10.1095/biolreprod.107.063024 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Storey, E. Relaxation in the pubic symphysis of the mouse during pregnancy and after relaxin administration, with special reference to the behavior of collagen. J. Pathol. Bacteriol. 74, 147–162 (1957).

    CAS  Article  Google Scholar 

  • 7.

    Joazeiro, P. P., Consonni, S. R., Rosa, R. G. & Toledo, O. M. S. Peri-partum changes to mouse pubic symphysis. In The Guide to Investigation of Mouse Pregnancy 1st edn (eds Croy, A., Yamada, A. T., DeMayo, F. J. & Adamson, S. L.) 403–417 (Elsevier, Amsterdam, 2014).

  • 8.

    Rosa, R. G., Akgul, Y., Joazeiro, P. P. & Mahendroo, M. Changes of large molecular weight hyaluronan and versican in the mouse pubic symphysis through pregnancy. Biol. Reprod. 86, 44. https://doi.org/10.1095/biolreprod.111.093229 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Consonni, S. R. et al. Elastic fiber assembly in the adult mouse pubic symphysis during pregnancy and postpartum. Biol. Reprod. 86(151–1), 151–10. https://doi.org/10.1095/biolreprod.111.095653 (2012).

    CAS  Article  Google Scholar 

  • 10.

    Pinheiro, M. C. et al. Histochemical and ultrastructural study of collagen fibers in mouse pubic symphysis during late pregnancy. Micron 35, 685–693. https://doi.org/10.1016/j.micron.2004.04.007 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Pinheiro, M. C. et al. Ultrastructural, immunohistochemical and biochemical analysis of glycosaminoglycans and proteoglycans in the mouse pubic symphysis during pregnancy. Cell Biol. Int. 29, 458–471. https://doi.org/10.1016/j.cellbi.2004.11.025 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 12.

    Consonni, S. R. et al. Recovery of the pubic symphysis on primiparous young and multiparous senescent mice at postpartum. Histol. Histopathol. 27, 885–896 (2012).

    PubMed  Google Scholar 

  • 13.

    Castelucci, B. G. et al. Time-dependent regulation of morphological changes and cartilage differentiation markers in the mouse pubic symphysis during pregnancy and postpartum recovery. PLoS ONE 13, e0195304. https://doi.org/10.1371/journal.pone.0195304 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Hall, K. Changes in the bone and cartilage of the symphysis pubis of the mouse during pregnancy and after parturition, as revealed by metachromatic staining and the periodic acid-schiff technique. J. Endocrinol. 11, 210. https://doi.org/10.1677/joe.0.0110210 (1954).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Borazjani, A., Couri, B., Balog, B. & Damaser, M. Mp1-13 pubic symphysis length is correlated with pelvic organ prolapse in lysyl oxidase like-1 knockout mice. J. Urol. 191, e6. https://doi.org/10.1016/j.juro.2014.02.111 (2014).

    Article  Google Scholar 

  • 16.

    Rosa, R. G. et al. Temporal changes in matrix metalloproteinases, their inhibitors, and cathepsins in mouse pubic symphysis during pregnancy and postpartum. Reprod. Sci. 18, 963–977. https://doi.org/10.1177/1933719111401657 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Garcia, E. A. et al. Hyaluronan involvement in the changes of mouse interpubic tissue during late pregnancy and postpartum. Cell Biol. Int. 32, 913–919. https://doi.org/10.1016/j.cellbi.2008.04.006 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Gomez-Lopez, N., StLouis, D., Lehr, M. A., Sanchez-Rodriguez, E. N. & Arenas-Hernandez, M. Immune cells in term and preterm labor. Cell Mol. Immunol. 11, 571–581. https://doi.org/10.1038/cmi.2014.46 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Timmons, B. C., Fairhurst, A. M. & Mahendroo, M. S. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J. Immunol. 182, 2700–2707. https://doi.org/10.4049/jimmunol.0803138 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Rodriguez, H. A., Ortega, H. H., Ramos, J. G., Munoz-de-Toro, M. & Luque, E. H. Guinea-pig interpubic joint (symphysis pubica) relaxation at parturition: Underlying cellular processes that resemble an inflammatory response. Reprod. Biol. Endocrinol. 1, 113. https://doi.org/10.1186/1477-7827-1-113 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Shynlova, O. et al. Infiltration of myeloid cells into decidua is a critical early event in the labour cascade and post-partum uterine remodelling. J. Cell Mol. Med. 17, 311–324. https://doi.org/10.1111/jcmm.12012 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Timmons, B. C. & Mahendroo, M. S. Timing of neutrophil activation and expression of proinflammatory markers do not support a role for neutrophils in cervical ripening in the mouse. Biol. Reprod. 74, 236–245. https://doi.org/10.1095/biolreprod.105.044891 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Brown, M. B., von Chamier, M., Allam, A. B. & Reyes, L. M1/M2 macrophage polarity in normal and complicated pregnancy. Front. Immunol. 5, 606. https://doi.org/10.3389/fimmu.2014.00606 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Egashira, M. et al. F4/80+ macrophages contribute to clearance of senescent cells in the mouse postpartum uterus. Endocrinology 158, 2344–2353. https://doi.org/10.1210/en.2016-1886 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 25.

    Yellon, S. M. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol. Reprod. 96, 13–23. https://doi.org/10.1095/biolreprod.116.142844 (2017).

    Article  PubMed  Google Scholar 

  • 26.

    Payne, K. J., Clyde, L. A., Weldon, A. J., Milford, T. A. & Yellon, S. M. Residency and activation of myeloid cells during remodeling of the prepartum murine cervix. Biol. Reprod. 87, 106. https://doi.org/10.1095/biolreprod.112.101840 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Zhang, Y. H., He, M., Wang, Y. & Liao, A. H. Modulators of the balance between M1 and M2 macrophages during pregnancy. Front. Immunol. 8, 120. https://doi.org/10.3389/fimmu.2017.00120 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Zhang, L. et al. The inflammatory changes of adipose tissue in late pregnant mice. J. Mol. Endocrinol. 47, 157–165. https://doi.org/10.1530/JME-11-0030 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Mackler, A. M., Iezza, G., Akin, M. R., McMillan, P. & Yellon, S. M. Macrophage trafficking in the uterus and cervix precedes parturition in the mouse. Biol. Reprod. 61, 879–883. https://doi.org/10.1095/biolreprod61.4.879 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Nadeau-Vallee, M. et al. Sterile inflammation and pregnancy complications: A review. Reproduction 152, R277–R292. https://doi.org/10.1530/REP-16-0453 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Schaefer, L. Complexity of danger: The diverse nature of damage-associated molecular patterns. J. Biol. Chem. 289, 35237–35245. https://doi.org/10.1074/jbc.R114.619304 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Frey, H., Schroeder, N., Manon-Jensen, T., Iozzo, R. V. & Schaefer, L. Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J. 280, 2165–2179. https://doi.org/10.1111/febs.12145 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Wight, T. N. et al. Versican—A critical extracellular matrix regulator of immunity and inflammation. Front. Immunol. 11, 512. https://doi.org/10.3389/fimmu.2020.00512 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Couri, B. M. et al. Effect of pregnancy and delivery on cytokine expression in a mouse model of pelvic organ prolapse. Female Pelvic Med. Reconstr. Surg. 23, 449–456. https://doi.org/10.1097/SPV.0000000000000394 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Rosa, R. G. et al. Relaxation of the mouse pubic symphysis during late pregnancy is not accompanied by the influx of granulocytes. Microsc. Res. Tech. 71, 169–178. https://doi.org/10.1002/jemt.20549 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Castelucci, B. G., Consonni, S. R., Rosa, V. S. & Joazeiro, P. P. Recruitment of monocytes and mature macrophages in mouse pubic symphysis relaxation during pregnancy and postpartum recovery. Biol. Reprod. 101, 466–477. https://doi.org/10.1093/biolre/ioz107 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Zhao, L. Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology 140, 445–453. https://doi.org/10.1210/endo.140.1.6404 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Krajnc-Franken, M. A. et al. Impaired nipple development and parturition in LGR7 knockout mice. Mol. Cell Biol. 24, 687–696. https://doi.org/10.1128/mcb.24.2.687-696.2004 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Kaftanovskaya, E. M., Huang, Z., Lopez, C., Conrad, K. & Agoulnik, A. I. Conditional deletion of the relaxin receptor gene in cells of smooth muscle lineage affects lower reproductive tract in pregnant mice. Biol. Reprod. 92, 91. https://doi.org/10.1095/biolreprod.114.127209 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Mi, Y. et al. Functional consequences of mannose and asialoglycoprotein receptor ablation. J. Biol. Chem. 291, 18700–18717. https://doi.org/10.1074/jbc.M116.738948 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Mizejewski, G. J. The alpha-fetoprotein third domain receptor binding fragment: In search of scavenger and associated receptor targets. J. Drug Target 23, 538–551. https://doi.org/10.3109/1061186X.2015.1015538 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Linck, G., Petrovic, A., Stoeckel, M. E. & Porte, A. Fine structure of the public symphysis in the mouse. Bull. Assoc. Anat. (Nancy) 60, 201–209 (1976).

    CAS  Google Scholar 

  • 43.

    Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797. https://doi.org/10.1038/ni.1923 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Chang, M. Y. et al. Versican is produced by Trif- and type I interferon-dependent signaling in macrophages and contributes to fine control of innate immunity in lungs. Am. J. Physiol. Lung Cell Mol. Physiol. 313, L1069–L1086. https://doi.org/10.1152/ajplung.00353.2017 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Barnett, F. H. et al. Macrophages form functional vascular mimicry channels in vivo. Sci. Rep. 6, 36659. https://doi.org/10.1038/srep36659 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Passi, A., Negrini, D., Albertini, R., Miserocchi, G. & De Luca, G. The sensitivity of versican from rabbit lung to gelatinase A (MMP-2) and B (MMP-9) and its involvement in the development of hydraulic lung edema. FEBS Lett. 456, 93–96. https://doi.org/10.1016/s0014-5793(99)00929-1 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964. https://doi.org/10.1038/nri1733 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    Moro, C. F., Consonni, S. R., Rosa, R. G., Nascimento, M. A. & Joazeiro, P. P. High iNOS mRNA and protein localization during late pregnancy suggest a role for nitric oxide in mouse pubic symphysis relaxation. Mol. Reprod. Dev. 79, 272–282. https://doi.org/10.1002/mrd.22020 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Chang, M. Y. et al. Monocyte-to-macrophage differentiation: Synthesis and secretion of a complex extracellular matrix. J. Biol. Chem. 287, 14122–14135. https://doi.org/10.1074/jbc.M111.324988 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Rayahin, J. E., Buhrman, J. S., Zhang, Y., Koh, T. J. & Gemeinhart, R. A. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater. Sci. Eng. 1, 481–493. https://doi.org/10.1021/acsbiomaterials.5b00181 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Schwabe, J., Donnelly, S. M., Jesmin, S., Leppert, P. & Mowa, C. N. A proteomic profile of cervical remodeling in mice during early and late pregnancy. J. Steroids Horm. Sci. 5, 1–9. https://doi.org/10.4172/2157-7536.1000123 (2014).

    CAS  Article  Google Scholar 

  • 52.

    Stanley, R. L., Ohashi, T., Gordon, J. & Mowa, C. N. A proteomic profile of postpartum cervical repair in mice. J. Mol. Endocrinol. 60, 17–28. https://doi.org/10.1530/JME-17-0179 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Lutz, P. G., Houzel-Charavel, A., Moog-Lutz, C. & Cayre, Y. E. Myeloblastin is an Myb target gene: Mechanisms of regulation in myeloid leukemia cells growth-arrested by retinoic acid. Blood 97, 2449–2456. https://doi.org/10.1182/blood.v97.8.2449 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Klimiankou, M., Mellor-Heineke, S., Zeidler, C., Welte, K. & Skokowa, J. Role of CSF3R mutations in the pathomechanism of congenital neutropenia and secondary acute myeloid leukemia. Ann. N. Y. Acad. Sci. 1370, 119–125. https://doi.org/10.1111/nyas.13097 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 55.

    Sharma, P., Sharma, A. & Srivastava, M. In vivo neutralization of alpha4 and beta7 integrins inhibits eosinophil trafficking and prevents lung injury during tropical pulmonary eosinophilia in mice. Eur. J. Immunol. 47, 1501–1512. https://doi.org/10.1002/eji.201747086 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    Ortega-Gomez, A. et al. Cathepsin G controls arterial but not venular myeloid cell recruitment. Circulation 134, 1176–1188. https://doi.org/10.1161/CIRCULATIONAHA.116.024790 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Janssens, R., Struyf, S. & Proost, P. The unique structural and functional features of CXCL12. Cell Mol. Immunol. 15, 299–311. https://doi.org/10.1038/cmi.2017.107 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    Girardi, G. Complement activation, a threat to pregnancy. Semin. Immunopathol. 40, 103–111. https://doi.org/10.1007/s00281-017-0645-x (2018).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Mastellos, D. C., Deangelis, R. A. & Lambris, J. D. Complement-triggered pathways orchestrate regenerative responses throughout phylogenesis. Semin. Immunol. 25, 29–38. https://doi.org/10.1016/j.smim.2013.04.002 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Luo, C., Chen, M., Madden, A. & Xu, H. Expression of complement components and regulators by different subtypes of bone marrow-derived macrophages. Inflammation 35, 1448–1461. https://doi.org/10.1007/s10753-012-9458-1 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    Modinger, Y., Loffler, B., Huber-Lang, M. & Ignatius, A. Complement involvement in bone homeostasis and bone disorders. Semin. Immunol. 37, 53–65. https://doi.org/10.1016/j.smim.2018.01.001 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 62.

    Stubelius, A. et al. Ncf1 affects osteoclast formation but is not critical for postmenopausal bone loss. BMC Musculoskelet. Disord. 17, 464. https://doi.org/10.1186/s12891-016-1315-1 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Kang, J. H., Sim, J. S., Zheng, T. & Yim, M. F4/80 inhibits osteoclast differentiation via downregulation of nuclear factor of activated T cells, cytoplasmic 1%. J. Arch. Pharm. Res. 40, 492–499. https://doi.org/10.1007/s12272-017-0900-7 (2017).

    CAS  Article  Google Scholar 

  • 64.

    Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part II: Role in immunity. Front. Immunol. 6, 257. https://doi.org/10.3389/fimmu.2015.00257 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Veridiano, A. M. et al. The mouse pubic symphysis as a remodeling system: Morphometrical analysis of proliferation and cell death during pregnancy, partus and postpartum. Cell Tissue Res. 330, 161–167. https://doi.org/10.1007/s00441-007-0463-x (2007).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Hong, Q., Kuo, E., Schultz, L., Boackle, R. J. & Chang, N. S. Conformationally altered hyaluronan restricts complement classical pathway activation by binding to C1q, C1r, C1s, C2, C5 and C9, and suppresses WOX1 expression in prostate DU145 cells. Int. J. Mol. Med. 19, 173–179 (2007).

    CAS  PubMed  Google Scholar 

  • 67.

    Groeneveld, T. W. et al. Proteoglycans decorin and biglycan with C1q interactions of the extracellular matrix and collectins. J. Immunol. 175, 4715–4723. https://doi.org/10.4049/jimmunol.175.7.4715 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 68.

    Fingleton, B. Matrix metalloproteinases as regulators of inflammatory processes. Biochim. Biophys. Acta Mol. Cell Res. 2036–2042, 2017. https://doi.org/10.1016/j.bbamcr.2017.05.010 (1864).

    CAS  Article  Google Scholar 

  • 69.

    Bellac, C. L. et al. Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis. Cell Rep. 9, 618–632. https://doi.org/10.1016/j.celrep.2014.09.006 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 70.

    Bennett, H. S., Wyrick, A. D., Lee, S. W. & McNeil, J. H. Science and art in preparing tissues embedded in plastic for light microscopy, with special reference to glycol methacrylate, glass knives and simple stains. Stain Technol. 51, 71–97 (1976).

    CAS  Article  Google Scholar 

  • 71.

    Joazeiro, P. P., Consonni, S. R., Rosa, R. G. & Toledo, O. M. S. Pubic symphysis evaluation. In The Guide to Investigation of Mouse Pregnancy 1st edn (eds Croy, A., Yamada, A. T., DeMayo, F. J. & Adamson, S. L.) 733–749 (Elsevier, Amsterdam, 2014).

  • 72.

    Bruni-Cardoso, A., Vilamaior, P. S., Taboga, S. R. & Carvalho, H. F. Localized matrix metalloproteinase (MMP)-2 and MMP-9 activity in the rat ventral prostate during the first week of postnatal development. Histochem. Cell Biol. 129, 805–815. https://doi.org/10.1007/s00418-008-0407-x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 73.

    Silva, J. C. et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal. Chem. 77, 2187–2200. https://doi.org/10.1021/ac048455k (2005).

    CAS  Article  PubMed  Google Scholar 

  • 74.

    Conover, W. J. & Iman, R. L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 35, 124–129 (1981).

    MATH  Google Scholar 

  • 75.

    Montgomery, D. C. Design and Analysis of Experiments 3rd edn. (Wiley, New York, 1991).

    Google Scholar 

  • Source