• 1.

    Hill, K. P. Medical marijuana for treatment of chronic pain and other medical and psychiatric problems: a clinical review. Jama 313, 2474–2483 (2015).

  • 2.

    Koppel, B. S. et al. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 82, 1556–1563 (2014).

  • 3.

    Whiting, P. F. et al. Cannabinoids for medical use: a systematic review and meta-analysis. Jama 313, 2456–2473 (2015).

  • 4.

    ProCon. Should Marijuana Be a Medical Option?, https://medicalmarijuana.procon.org/ (2017).

  • 5.

    Elikkottil, J., Gupta, P. & Gupta, K. The analgesic potential of cannabinoids. J Opioid Manag 5, 341–357 (2009).

  • 6.

    Nahas, G., Harvey, D. J., Sutin, K., Turndorf, H. & Cancro, R. A molecular basis of the therapeutic and psychoactive properties of cannabis (delta9-tetrahydrocannabinol). Prog Neuropsychopharmacol Biol Psychiatry 26, 721–730 (2002).

  • 7.

    Paris, M. Cannabis therapy. Ann Pharm Fr 60, 271–273 (2002).

  • 8.

    Walsh, D., Nelson, K. A. & Mahmoud, F. A. Established and potential therapeutic applications of cannabinoids in oncology. Support Care Cancer 11, 137–143, https://doi.org/10.1007/s00520-002-0387-7 (2003).

  • 9.

    Nagarkatti, P., Pandey, R., Rieder, S. A., Hegde, V. L. & Nagarkatti, M. Cannabinoids as novel anti-inflammatory drugs. Future Med Chem 1, 1333–1349, https://doi.org/10.4155/fmc.09.93 (2009).

  • 10.

    Costa, B. On the pharmacological properties of Delta9-tetrahydrocannabinol (THC). Chemistry & biodiversity 4, 1664–1677, https://doi.org/10.1002/cbdv.200790146 (2007).

  • 11.

    Wilkinson, J. D. et al. Medicinal cannabis: is delta9-tetrahydrocannabinol necessary for all its effects? The Journal of pharmacy and pharmacology 55, 1687–1694, https://doi.org/10.1211/0022357022304 (2003).

  • 12.

    Borgelt, L. M., Franson, K. L., Nussbaum, A. M. & Wang, G. S. The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy 33, 195–209, https://doi.org/10.1002/phar.1187 (2013).

  • 13.

    Cascini, F., Aiello, C. & Di Tanna, G. Increasing delta-9-tetrahydrocannabinol (Delta-9-THC) content in herbal cannabis over time: systematic review and meta-analysis. Current drug abuse reviews 5, 32–40 (2012).

  • 14.

    Mehmedic, Z. et al. Potency trends of Delta9-THC and other cannabinoids in confiscated cannabis preparations from 1993 to 2008. Journal of forensic sciences 55, 1209–1217, https://doi.org/10.1111/j.1556-4029.2010.01441.x (2010).

  • 15.

    Garcia-Planella, E. et al. Use of complementary and alternative medicine and drug abuse in patients with inflammatory bowel disease. Med Clin (Barc) 128, 45–48 (2007).

  • 16.

    Lal, S. et al. Cannabis use amongst patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol 23, 891–896, https://doi.org/10.1097/MEG.0b013e328349bb4c (2011).

  • 17.

    Ravikoff Allegretti, J., Courtwright, A., Lucci, M., Korzenik, J. R. & Levine, J. Marijuana use patterns among patients with inflammatory bowel disease. Inflamm Bowel Dis 19, 2809–2814, https://doi.org/10.1097/01.MIB.0000435851.94391.37 (2013).

  • 18.

    Storr, M., Devlin, S., Kaplan, G. G., Panaccione, R. & Andrews, C. N. Cannabis use provides symptom relief in patients with inflammatory bowel disease but is associated with worse disease prognosis in patients with Crohn’s disease. Inflamm Bowel Dis 20, 472–480, https://doi.org/10.1097/01.MIB.0000440982.79036.d6 (2014).

  • 19.

    Ihenetu, K., Molleman, A., Parsons, M. E. & Whelan, C. J. Inhibition of interleukin-8 release in the human colonic epithelial cell line HT-29 by cannabinoids. Eur J Pharmacol 458, 207–215 (2003).

  • 20.

    Storr, M. A. et al. Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis. Inflamm Bowel Dis 15, 1678–1685, https://doi.org/10.1002/ibd.20960 (2009).

  • 21.

    Wright, K. et al. Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing. Gastroenterology 129, 437–453, https://doi.org/10.1016/j.gastro.2005.05.026 (2005).

  • 22.

    Di Marzo, V., Bifulco, M. & De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nature reviews. Drug discovery 3, 771–784, https://doi.org/10.1038/nrd1495 (2004).

  • 23.

    McKallip, R. J., Lombard, C., Martin, B. R., Nagarkatti, M. & Nagarkatti, P. S. Delta(9)-tetrahydrocannabinol-induced apoptosis in the thymus and spleen as a mechanism of immunosuppression in vitro and in vivo. J Pharmacol Exp Ther 302, 451–465, https://doi.org/10.1124/jpet.102.033506 (2002).

  • 24.

    Sido, J. M., Jackson, A. R., Nagarkatti, P. S. & Nagarkatti, M. Marijuana-derived Delta-9-tetrahydrocannabinol suppresses Th1/Th17 cell-mediated delayed-type hypersensitivity through microRNA regulation. J Mol Med (Berl) 94, 1039–1051, https://doi.org/10.1007/s00109-016-1404-5 (2016).

  • 25.

    Sido, J. M., Nagarkatti, P. S. & Nagarkatti, M. Delta(9)-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells. J Leukoc Biol 98, 435–447, https://doi.org/10.1189/jlb.3A0115-030RR (2015).

  • 26.

    Sido, J. M., Yang, X., Nagarkatti, P. S. & Nagarkatti, M. Delta9-Tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8. J Leukoc Biol 97, 677–688, https://doi.org/10.1189/jlb.1A1014-479R (2015).

  • 27.

    Yang, X., Bam, M., Nagarkatti, P. S. & Nagarkatti, M. RNA-seq Analysis of delta9-Tetrahydrocannabinol-treated T Cells Reveals Altered Gene Expression Profiles That Regulate Immune Response and Cell Proliferation. J Biol Chem 291, 15460–15472, https://doi.org/10.1074/jbc.M116.719179 (2016).

  • 28.

    Lefever, T. W., Marusich, J. A., Antonazzo, K. R. & Wiley, J. L. Evaluation of WIN 55,212-2 self-administration in rats as a potential cannabinoid abuse liability model. Pharmacol Biochem Behav 118, 30–35, https://doi.org/10.1016/j.pbb.2014.01.002 (2014).

  • 29.

    Reagan-Shaw, S., Nihal, M. & Ahmad, N. Dose translation from animal to human studies revisited. FASEB J 22, 659–661, https://doi.org/10.1096/fj.07-9574LSF (2008).

  • 30.

    Fraguas-Sanchez, A. I. & Torres-Suarez, A. I. Medical Use of Cannabinoids. Drugs 78, 1665–1703, https://doi.org/10.1007/s40265-018-0996-1 (2018).

  • 31.

    Pollmann, W. & Feneberg, W. Current management of pain associated with multiple sclerosis. CNS Drugs 22, 291–324, https://doi.org/10.2165/00023210-200822040-00003 (2008).

  • 32.

    Zajicek, J. P. & Apostu, V. I. Role of cannabinoids in multiple sclerosis. CNS Drugs 25, 187–201, https://doi.org/10.2165/11539000-000000000-00000 (2011).

  • 33.

    FDA. Marinol, https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/018651s021lbl.pdf.

  • 34.

    Watanabe, K., Matsunaga, T., Narimatsu, S., Yamamoto, I. & Yoshimura, H. Sex difference in hepatic microsomal aldehyde oxygenase activity in different strains of mice. Res Commun Chem Pathol Pharmacol 78, 373–376 (1992).

  • 35.

    Wagner, E. J. Sex differences in cannabinoid-regulated biology: A focus on energy homeostasis. Front Neuroendocrinol 40, 101–109, https://doi.org/10.1016/j.yfrne.2016.01.003 (2016).

  • 36.

    Wallin, M. T. et al. The prevalence of MS in the United States: A population-based estimate using health claims data. Neurology 92, e1029–e1040, https://doi.org/10.1212/WNL.0000000000007035 (2019).

  • 37.

    Chagoyen, M. & Pazos, F. MBRole: enrichment analysis of metabolomic data. Bioinformatics 27, 730–731, https://doi.org/10.1093/bioinformatics/btr001 (2011).

  • 38.

    Lopez-Ibanez, J., Pazos, F. & Chagoyen, M. MBROLE 2.0-functional enrichment of chemical compounds. Nucleic Acids Res 44, W201–204, https://doi.org/10.1093/nar/gkw253 (2016).

  • 39.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) 57, 289–300 (1995).

  • 40.

    Kim, H. H. et al. Metabolomic profiling of CSF in multiple sclerosis and neuromyelitis optica spectrum disorder by nuclear magnetic resonance. PLoS One 12, e0181758, https://doi.org/10.1371/journal.pone.0181758 (2017).

  • 41.

    Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27–30 (2000).

  • 42.

    Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46, D608–D617, https://doi.org/10.1093/nar/gkx1089 (2018).

  • 43.

    Greenbaum, A. L. & Pinder, S. The pathway of biosynthesis of nicotinamide-adenine dinucleotide in rat mammary gland. Biochem J 107, 55–62 (1968).

  • 44.

    Verdin, E. NAD(+) in aging, metabolism, and neurodegeneration. Science 350, 1208–1213, https://doi.org/10.1126/science.aac4854 (2015).

  • 45.

    Tarrago, M. G. et al. A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD(+) Decline. Cell Metab 27, 1081–1095 e1010, https://doi.org/10.1016/j.cmet.2018.03.016 (2018).

  • 46.

    Zhang, H. et al. NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443, https://doi.org/10.1126/science.aaf2693 (2016).

  • 47.

    Schulz, J. B., Lindenau, J., Seyfried, J. & Dichgans, J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267, 4904–4911, https://doi.org/10.1046/j.1432-1327.2000.01595.x (2000).

  • 48.

    Newgard, C. B. et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance (vol 9, pg 311, 2009). Cell Metab 9, 565–566, https://doi.org/10.1016/j.cmet.2009.05.001 (2009).

  • 49.

    DeBerardinis, R. J. et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. P Natl Acad Sci USA 104, 19345–19350, https://doi.org/10.1073/pnas.0709747104 (2007).

  • 50.

    Li, Y. et al. Analysis of 2-(2-Phenylethyl)chromones by UPLC-ESI-QTOF-MS and Multivariate Statistical Methods in Wild and Cultivated Agarwood. Int J Mol Sci 17, https://doi.org/10.3390/ijms17050771 (2016).

  • 51.

    Zhang, X. et al. Metabolite profiling of plasma and urine from rats with TNBS-induced acute colitis using UPLC-ESI-QTOF-MS-based metabonomics–a pilot study. FEBS J 279, 2322–2338, https://doi.org/10.1111/j.1742-4658.2012.08612.x (2012).

  • 52.

    Nakano, N. et al. PI3K/AKT signaling mediated by G proteincoupled receptors is involved in neurodegenerative Parkinson’s disease (Review). Int J Mol Med 39, 253–260, https://doi.org/10.3892/ijmm.2016.2833 (2017).

  • 53.

    Norton, N. et al. Association analysis of AKT1 and schizophrenia in a UK case control sample. Schizophr Res 93, 58–65, https://doi.org/10.1016/j.schres.2007.02.006 (2007).

  • 54.

    Kisoh, K. et al. Involvement of GSK-3beta Phosphorylation Through PI3-K/Akt in Cerebral Ischemia-Induced Neurogenesis in Rats. Mol Neurobiol 54, 7917–7927, https://doi.org/10.1007/s12035-016-0290-8 (2017).

  • 55.

    Sattler, M. B. et al. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ 11(Suppl 2), S181–192, https://doi.org/10.1038/sj.cdd.4401504 (2004).

  • 56.

    Bruhn, M. A., Pearson, R. B., Hannan, R. D. & Sheppard, K. E. AKT-independent PI3-K signaling in cancer – emerging role for SGK3. Cancer Manag Res 5, 281–292, https://doi.org/10.2147/CMAR.S35178 (2013).

  • 57.

    Stegeman, H., Span, P. N., Kaanders, J. H. & Bussink, J. Improving chemoradiation efficacy by PI3-K/AKT inhibition. Cancer Treat Rev 40, 1182–1191, https://doi.org/10.1016/j.ctrv.2014.09.005 (2014).

  • 58.

    Farooqui, A. A., Horrocks, L. A. & Farooqui, T. Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. Journal of neuroscience research 85, 1834–1850 (2007).

  • 59.

    Gardell, S. E., Dubin, A. E. & Chun, J. Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 12, 65–75, https://doi.org/10.1016/j.molmed.2005.12.001 (2006).

  • 60.

    Jiang, X. C. & Liu, J. Sphingolipid metabolism and atherosclerosis. Handb Exp Pharmacol, 133–146, https://doi.org/10.1007/978-3-7091-1511-4_7 (2013).

  • 61.

    Dang, V. T., Huang, A., Zhong, L. H., Shi, Y. & Werstuck, G. H. Comprehensive Plasma Metabolomic Analyses of Atherosclerotic Progression Reveal Alterations in Glycerophospholipid and Sphingolipid Metabolism in Apolipoprotein E-deficient Mice. Sci Rep 6, 35037, https://doi.org/10.1038/srep35037 (2016).

  • 62.

    Singla, S., Sachdeva, R. & Mehta, J. L. Cannabinoids and atherosclerotic coronary heart disease. Clin Cardiol 35, 329–335, https://doi.org/10.1002/clc.21962 (2012).

  • 63.

    Mayer, E. & Saper, C. Pain modulation: expectation, opioid analgesia and virtual pain. The Biological Basis for Mind Body Interactions 122, 245 (2000).

  • 64.

    Drolet, G. et al. Role of endogenous opioid system in the regulation of the stress response. Progress in Neuro-Psychopharmacology and Biological Psychiatry 25, 729–741 (2001).

  • 65.

    Kromer, W. Endogenous opioids, the enteric nervous system and gut motility. Digestive Diseases 8, 361–373 (1990).

  • 66.

    Benarroch, E. E. Endogenous opioid systems Current concepts and clinical correlations. Neurology 79, 807–814 (2012).

  • 67.

    Momin, A. A. et al. A method for visualization of “omic” datasets for sphingolipid metabolism to predict potentially interesting differences. J Lipid Res 52, 1073–1083, https://doi.org/10.1194/jlr.M010454 (2011).

  • 68.

    Zhang, H. et al. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Molecular BioSystems 12, 902–913 (2016).

  • 69.

    Duran, M. et al. The identification of (E)‐2‐methylglutaconic acid, a new isoleucine metabolite, in the urine of patients with β‐ketothiolase deficiency, propionic acidaemia and methylmalonic acidaemia. Biological Mass Spectrometry 9, 1–5 (1982).

  • 70.

    Bennett, M. J., Powell, S., Swartling, D. J. & Gibson, K. M. Tiglylglycine excreted in urine in disorders of isoleucine metabolism and the respiratory chain measured by stable isotope dilution GC-MS. Clinical chemistry 40, 1879–1883 (1994).

  • 71.

    Lotta, L. A. et al. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Med 13, e1002179, https://doi.org/10.1371/journal.pmed.1002179 (2016).

  • 72.

    Weiss, L. et al. Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity 39, 143–151, https://doi.org/10.1080/08916930500356674 (2006).

  • 73.

    Mendizabal-Zubiaga, J. et al. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration. Front Physiol 7, 476, https://doi.org/10.3389/fphys.2016.00476 (2016).

  • 74.

    Arrabal, S. et al. Pharmacological blockade of cannabinoid CB1 receptors in diet-induced obesity regulates mitochondrial dihydrolipoamide dehydrogenase in muscle. PloS one 10, e0145244 (2015).

  • 75.

    Carr, D. J. The role of endogenous opioids and their receptors in the immune system. Proceedings of the Society for Experimental Biology and Medicine 198, 710–720 (1991).

  • 76.

    Cook, J. A. et al. Mass Spectrometry-Based Metabolomics Identifies Longitudinal Urinary Metabolite Profiles Predictive of Radiation-Induced Cancer. Cancer Res 76, 1569–1577, https://doi.org/10.1158/0008-5472.CAN-15-2416 (2016).

  • Source