• 1.

    Childress, L. & Hanson, R. Diamond NV centers for quantum computing and quantum networks. MRS Bull. 38, 134–138 (2013).

    CAS  Google Scholar 

  • 2.

    Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012).

    ADS  CAS  Google Scholar 

  • 3.

    Boudou, J.-P. et al. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Igarashi, R. et al. Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett. 12, 5726–5732 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Leis, J., Martin, P. & Buttsworth, D. Simplified digital lock-in amplifier algorithm. Electron. Lett. 48, 259 (2012).

    ADS  Google Scholar 

  • 7.

    Shah, K. G. & Yager, P. Wavelengths and lifetimes of paper autofluorescence: a simple substrate screening process to enhance the sensitivity of fluorescence-based assays in paper. Anal. Chem. 89, 12023–12029 (2017).

    CAS  PubMed  Google Scholar 

  • 8.

    Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Chang, H.-C., Hsiao, W. W.-W. & Su, M.-C. Fluorescent Nanodiamonds Ch. 11 (Wiley, 2018).

  • 10.

    Yu, S. J., Kang, M. W., Chang, H. C., Chen, K. M. & Yu, Y. C. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127, 17604–17605 (2005).

    CAS  PubMed  Google Scholar 

  • 11.

    Shenderova, O. A. & McGuire, G. E. Science and engineering of nanodiamond particle surfaces for biological applications (review). Biointerphases 10, 030802 (2015).

    PubMed  Google Scholar 

  • 12.

    Chang, Y. R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3, 284–288 (2008).

    CAS  PubMed  Google Scholar 

  • 13.

    Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Tetienne, J. P. et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: An application to qualitative all-optical magnetic imaging. New J. Phys. 14, 103033 (2012).

    Google Scholar 

  • 16.

    Acosta, V. M. et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    Hsiao, W. W. W., Hui, Y. Y., Tsai, P. C. & Chang, H. C. Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc. Chem. Res. 49, 400–407 (2016).

    CAS  PubMed  Google Scholar 

  • 18.

    Vaijayanthimala, V. & Chang, H.-C. Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4, 47–55 (2009).

    CAS  PubMed  Google Scholar 

  • 19.

    Fu, C.-C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl Acad. Sci. USA 104, 727–732 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Chang, B. M. et al. Highly fluorescent nanodiamonds protein-functionalized for cell labeling and targeting. Adv. Funct. Mater. 23, 5737–5745 (2013).

    CAS  Google Scholar 

  • 21.

    Waddington, D. E. et al. Nanodiamond-enhanced MRI via in situ hyperpolarization. Nat. Commun. 8, 15118 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Hegyi, A. & Yablonovitch, E. Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds. Nano Lett. 13, 1173–1178 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 23.

    Sarkar, S. K. et al. Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. Biomed. Opt. Express 5, 1190 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Chapman, R. & Plakhoitnik, T. Background-free imaging of luminescent nanodiamonds using external magnetic field for contrast enhancement. Opt. Lett. 38, 1847 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 25.

    Doronina-Amitonova, L., Fedotov, I. & Zheltikov, A. Ultrahigh-contrast imaging by temporally modulated stimulated emission depletion. Opt. Lett. 40, 725 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Bhutta, Z. A., Sommerfeld, J., Lassi, Z. S., Salam, R. A. & Das, J. K. Global burden, distribution, and interventions for infectious diseases of poverty. Infect. Dis. Poverty 3, 21 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Global HIV & AIDS statistics — 2018 fact sheet. https://www.unaids.org/en/resources/fact-sheet (UNAIDS, 2018).

  • 28.

    May, M. et al. Impact of late diagnosis and treatment on life expectancy in people with HIV-1: UK Collaborative HIV Cohort (UK CHIC) Study. Br. Med. J. 343, d6016 (2011).

    Google Scholar 

  • 29.

    Gray, E. R. et al. p24 revisited: a landscape review of antigen detection for early HIV diagnosis. AIDS 32, 2089–2102 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Price, C. P. Point of care testing. Br. Med. J. 322, 1285–1288 (2001).

    CAS  Google Scholar 

  • 31.

    World Malaria Report. https://www.who.int/malaria/publications/world-malaria-report-2018/en/ (WHO, 2018).

  • 32.

    Land, K. J., Boeras, D. I., Chen, X. S., Ramsay, A. R. & Peeling, R. W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 4, 46–54 (2019).

    CAS  PubMed  Google Scholar 

  • 33.

    Walter, J. G. et al. Protein microarrays: reduced autofluorescence and improved LOD. Eng. Life Sci. 10, 103–108 (2010).

    CAS  Google Scholar 

  • 34.

    Kim, J. et al. Rapid and background-free detection of avian influenza virus in opaque sample using NIR-to-NIR upconversion nanoparticle-based lateral flow immunoassay platform. Biosens. Bioelectron. 112, 209–215 (2018).

    CAS  PubMed  Google Scholar 

  • 35.

    Paterson, A. S. et al. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors. Lab Chip 17, 1051–1059 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Boudou, J. P., David, M. O., Joshi, V., Eidi, H. & Curmi, P. A. Hyperbranched polyglycerol modified fluorescent nanodiamond for biomedical research. Diamond Relat. Mater. 38, 131–138 (2013).

    ADS  CAS  Google Scholar 

  • 37.

    Hermanson, G. T. Zero-length crosslinkers. In Bioconjugate Techniques 3rd edn (ed. Hermanson, G. T.) Ch. 4 (Academic, 2013).

  • 38.

    González Flecha, F. L. & Levi, V. Determination of the molecular size of BSA by fluorescence anisotropy. Biochem. Mol. Biol. Educ. 31, 319–322 (2003).

    Google Scholar 

  • 39.

    Reth, M. Matching cellular dimensions with molecular sizes. Nat. Immunol. 14, 765–767 (2013).

    CAS  PubMed  Google Scholar 

  • 40.

    Ngom, B., Guo, Y., Wang, X. & Bi, D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal. Bioanal. Chem. 397, 1113–1135 (2010).

    CAS  PubMed  Google Scholar 

  • 41.

    Armbruster, D. A. & Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29, S49–S52 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Daher, R. K., Stewart, G., Boissinot, M. & Bergeron, M. G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem. 62, 947–958 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Lillis, L. et al. Cross-subtype detection of HIV-1 using reverse transcription and recombinase polymerase amplification. J. Virol. Methods 230, 28–35 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Crannell, Z. A., Rohrman, B. & Richards-Kortum, R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS ONE 9, e112146 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Rohrman, B. A. & Richards-Kortum, R. R. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 12, 3082 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Boyle, D. S., Lehman, D. A. & Lillis, L. Rapid detection of HIV-1 proviral DNA for early infant diagnosis using rapid detection of HIV-1 proviral DNA for early infant diagnosis. MBio 4, e00135-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Dineva, M. A., Mahilum-Tapay, L. & Lee, H. Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings. Analyst 132, 1193 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 48.

    Jauset-Rubio, M. et al. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Sci. Rep. 6, 37732 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Phillips, A. et al. Sustainable HIV treatment in Africa through viral-load-informed differentiated care. Nature 528, S68–S76 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Kuo, Y., Hsu, T.-Y., Wu, Y.-C., Hsu, J.-H. & Chang, H.-C. Fluorescence lifetime imaging microscopy of nanodiamonds in vivo. In Proc. Advances in Photonics of Quantum Computing, Memory, and Communication VI Vol. 8635, 863503 (SPIE, 2013).

  • 51.

    Kim, E. Y. et al. A real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles. Nucleic Acids Res. 34, e54 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Besnier, C., Takeuchi, Y. & Towers, G. Restriction of lentivirus in monkeys. Proc. Natl Acad. Sci. USA 99, 11920–11925 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Bainbridge, J. W. et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of cornealendothelium and retinal pigment epithelium. Gene Ther. 8, 1665–1668 (2001).

    CAS  PubMed  Google Scholar 

  • 54.

    Foley, B. et al. HIV Sequence Compendium 2017. LA-UR-18-25673 (Los Alamos National Laboratory, 2018).

  • 55.

    Kong, J. & Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. (Shanghai) 39, 549–559 (2007).

    CAS  Google Scholar 

  • 56.

    Zadeh, J. N. et al. NUPACK: Analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    CAS  PubMed  Google Scholar 

  • 57.

    SantaLucia, J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl Acad. Sci. USA 95, 1460–1465 (1998).

    ADS  CAS  PubMed  Google Scholar 

  • 58.

    Laitinen, M. P. & Vuento, M. Affinity immunosensor for milk progesterone: Identification of critical parameters. Biosens. Bioelectron. 11, 1207–1214 (1996).

    CAS  PubMed  Google Scholar 

  • Source