• 1.

    Mage, P. L. et al. Shape-based separation of synthetic microparticles. Nat. Mater. 18, 82–89 (2019).

    CAS  PubMed  Google Scholar 

  • 2.

    Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Monteiro, N., Martins, A., Reis, R. L. & Neves, N. M. Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface 11, 20140459 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Zylberberg, C., Gaskill, K., Pasley, S. & Matosevic, S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 24, 441–452 (2017).

    CAS  PubMed  Google Scholar 

  • 6.

    Petersen, A. L., Hansen, A. E., Gabizon, A. & Andresen, T. L. Liposome imaging agents in personalized medicine. Adv. Drug Deliv. Rev. 64, 1417–1435 (2012).

    CAS  PubMed  Google Scholar 

  • 7.

    Rikken, R. S. M. et al. Shaping polymersomes into predictable morphologies via out-of-equilibrium self-assembly. Nat. Commun. 7, 12606 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Che, H., Cao, S. & van Hest, J. C. M. Feedback-induced temporal control of “breathing” polymersomes to create self-adaptive nanoreactors. J. Am. Chem. Soc. 140, 5356–5359 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Li, M., Harbron, R., Weaver, J., Binks, B. & Mann, S. Electrostatically gated membrane permeability in inorganic protocells. Nat. Chem. 5, 529–536 (2013).

    CAS  PubMed  Google Scholar 

  • 10.

    Huang, X. et al. Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nat. Commun. 4, 2239 (2013).

    PubMed  Google Scholar 

  • 11.

    Huang, X., Patil, A. J., Li, M. & Mann, S. Design and construction of higher-order structure and function in proteinosome-based protocells. J. Am. Chem. Soc. 136, 9225–9234 (2014).

    CAS  PubMed  Google Scholar 

  • 12.

    Kumar, B. V. V. S. P., Patil, A. J. & Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells. Nat. Chem. 10, 1154–1163 (2018).

    CAS  PubMed  Google Scholar 

  • 13.

    Jang, W.-S., Kim, H. J., Gao, C., Lee, D. & Hammer, D. A. Enzymatically powered surface-associated self-motile protocells. Small 14, 1801715 (2018).

    Google Scholar 

  • 14.

    Rodríguez-Arco, L., Li, M. & Mann, S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nat. Mater. 16, 857–863 (2017).

    PubMed  Google Scholar 

  • 15.

    Qiao, Y., Li, M., Booth, R. & Mann, S. Predatory behaviour in synthetic protocell communities. Nat. Chem. 9, 110–119 (2017).

    CAS  PubMed  Google Scholar 

  • 16.

    Joesaar, A. et al. DNA-based communication in populations of synthetic protocells. Nat. Nanotechnol. 14, 369–378 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Sun, S. et al. Chemical signaling and functional activation in colloidosome-based protocells. Small 12, 1920–1927 (2016).

    CAS  PubMed  Google Scholar 

  • 18.

    Schwarz-Schilling, M., Aufinger, L., Mückl, A. & Simmel, F. C. Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets. Integr. Biol. 8, 564–570 (2016).

    CAS  Google Scholar 

  • 19.

    Adamala, K. P., Martin-Alarcon, D. A., Guthrie-Honea, K. R. & Boyden, E. S. Engineering genetic circuit interactions within and between synthetic minimal cells. Nat. Chem. 9, 431–439 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Tang, T.-Y. D. et al. Gene-mediated chemical communication in synthetic protocell communities. ACS Synth. Biol. 7, 339–346 (2018).

    CAS  PubMed  Google Scholar 

  • 21.

    Gobbo, P. et al. Programmed assembly of synthetic protocells into thermoresponsive prototissues. Nat. Mater. 17, 1145–1153 (2018).

    CAS  PubMed  Google Scholar 

  • 22.

    Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 3, 720–724 (2011).

    CAS  PubMed  Google Scholar 

  • 23.

    Merindol, R., Loescher, S., Samanta, A. & Walther, A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nat. Nanotechnol. 13, 730–738 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Martin, N. et al. Antagonistic chemical coupling in self-reconfigurable host–guest protocells. Nat. Commun. 9, 3652 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Tian, L. et al. Nonequilibrium spatiotemporal sensing within acoustically patterned two-dimensional protocell arrays. ACS Cent. Sci. 4, 1551–1558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Drobot, B. et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat. Commun. 9, 3643 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Poudyal, R. R. et al. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat. Commun. 10, 490 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Zhang, Y., Baekgaard-Laursen, M. & Städler, B. Small subcompartmentalised microreactors as support for hepatocytes. Adv. Healthc. Mater. 6, 1601141 (2017).

    Google Scholar 

  • 29.

    Balasubramanian, V. et al. Biomimetic engineering using cancer cell membranes for designing compartmentalized nanoreactors with organelle‐like functions. Adv. Mater. 29, 1605375 (2017).

    Google Scholar 

  • 30.

    Godoy-Gallardo, M., Labay, C., Jansman, M. M. T., Ek, P. K. & Hosta-Rigau, L. Intracellular microreactors as artificial organelles to conduct multiple enzymatic reactions simultaneously. Adv. Healthc. Mater. 6, 1601190 (2017).

    Google Scholar 

  • 31.

    Thingholm, B., Schattling, P., Zhang, Y. & Städler, B. Subcompartmentalized nanoreactors as artificial organelle with intracellular activity. Small 12, 1806–1814 (2016).

    CAS  PubMed  Google Scholar 

  • 32.

    Tanner, P., Balasubramanian, V. & Palivan, C. G. Aiding nature’s organelles: artificial peroxisomes play their role. Nano Lett. 13, 2875–2883 (2013).

    CAS  PubMed  Google Scholar 

  • 33.

    Einfalt, T. et al. Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment. Nat. Commun. 9, 1127 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Gardner, P. M., Winzer, K. & Davis, B. G. Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 1, 377–383 (2009).

    CAS  PubMed  Google Scholar 

  • 35.

    Lentini, R. et al. Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nat. Commun. 5, 4012 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Lentini, R. et al. Two-way chemical communication between artificial and natural cells. ACS Cent. Sci. 3, 117–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Xia, Y. et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat. Mater. 17, 187–194 (2018).

    CAS  PubMed  Google Scholar 

  • 38.

    Zhou, Y. et al. In situ gelation-induced death of cancer cells based on proteinosomes. Biomacromolecules 188, 2446–2453 (2017).

    Google Scholar 

  • 39.

    Chen, Z. et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 14, 86–93 (2018).

    CAS  PubMed  Google Scholar 

  • 40.

    Crosby, J. et al. Stabilization and enhanced reactivity of actinorhodinpolyketide synthase minimal complex in polymer–nucleotide coacervate droplets. Chem. Commun. 48, 11832–11834 (2012).

    CAS  Google Scholar 

  • 41.

    Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    CAS  PubMed  Google Scholar 

  • 42.

    Tang, T.-Y. D., van Swaay, D., deMello, A., Anderson, J. L. R. & Mann, S. In vitro gene expression within membrane-free coacervate protocells. Chem. Commun. 51, 11429–11432 (2015).

    Google Scholar 

  • 43.

    Tang, T.-Y. D. et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6, 527–533 (2014).

    Google Scholar 

  • 44.

    Mason, A. F., Buddingh, B. C., Williams, D. S. & van Hest, J. C. M. Hierarchical self-assembly of a copolymer-stabilized coacervate protocell. J. Am. Chem. Soc. 139, 17309–17312 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Fothergill, J., Li, M., Davis, S. A., Cunningham, J. A. & Mann, S. Nanoparticle-based membrane assembly and silicification in coacervate microdroplets as a route to complex colloidosomes. Langmuir 30, 14591–14596 (2014).

    CAS  PubMed  Google Scholar 

  • 46.

    Deng, N.-N. & Huck, W. T. S. Microfluidic formation of monodisperse coacervate organelles in liposomes. Angew. Chem. Int. Ed. 56, 9736–9740 (2017).

    CAS  Google Scholar 

  • 47.

    Long, M. S., Cans, A.-S. & Keating, C. D. Budding and asymmetric protein microcompartmentation in giant vesicles containing two aqueous phases. J. Am. Chem. Soc. 130, 756–762 (2008).

    CAS  PubMed  Google Scholar 

  • 48.

    Booth, R., Qiao, Y., Li, M. & Mann, S. Spatial positioning and chemical coupling in coacervate‐in‐proteinosome protocells. Angew. Chem. Int. Ed. 58, 9120–9124 (2019).

    CAS  Google Scholar 

  • 49.

    Blocher, W. C. & Perry, S. L. Complex coacervate-based materials for biomedicine. WIREs Nanomed. Nanobiotechnol. 9, e1442 (2017).

    Google Scholar 

  • 50.

    Chu, H., Gao, J., Chen, C.-W., Huard, J. & Wang, Y. Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis. Proc. Natl Acad. Sci. USA 108, 13444–13449 (2011).

    CAS  PubMed  Google Scholar 

  • 51.

    Chen, W. C. W. et al. Controlled dual delivery of fibroblast growth factor-2 and interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair. Biomaterials 72, 138–151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Chu, H., Chen, C.-W., Huard, J. & Wang, Y. The effect of a heparin-based coacervate of fibroblast growth factor-2 on scarring in the infarcted myocardium. Biomaterials 34, 1747–1756 (2013).

    CAS  PubMed  Google Scholar 

  • 53.

    Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    CAS  PubMed  Google Scholar 

  • 54.

    Hu, C.-M. J., Fang, R. H., Luk, B. T. & Zhang, L. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 8, 933–938 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Sokol, R. J., Heubi, J. E., Iannaccone, S., Bove, K. E. & Balistreri, W. F. Mechanism causing vitamin E deficiency during chronic childhood cholestasis. Gastroenterology 85, 1172–1182 (1983).

    CAS  PubMed  Google Scholar 

  • 56.

    Huang, J., Sommers, E. M., Kim-Shapiro, D. B. & King, S. B. Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea. J. Am. Chem. Soc. 124, 3473–3480 (2002).

    CAS  PubMed  Google Scholar 

  • 57.

    Gewaltig, M. T. & Kojda, G. Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc. Res. 55, 250–260 (2002).

    CAS  PubMed  Google Scholar 

  • 58.

    Cohen, R. A. et al. Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ. Res. 84, 210–219 (1999).

    CAS  PubMed  Google Scholar 

  • 59.

    Wang, C., Trudel, L. J., Wogan, G. N. & Deen, W. M. Thresholds of nitric oxide-mediated toxicity in human lymphoblastoid cells. Chem. Res. Toxicol. 16, 1004–1013 (2003).

    CAS  PubMed  Google Scholar 

  • 60.

    Pacher, P., Beckman, J. S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Yang, T., Zelikin, A. N. & Chandrawati, R. Progress and promise of nitric oxide-releasing platforms. Adv. Sci. (Weinh.) 5, 1701043 (2018).

    Google Scholar 

  • 62.

    Franchi-Micheli, S. et al. Mechanical stretch reveals different components of endothelial-mediated vascular tone in rat aortic strips. Br. J. Pharmacol. 131, 1355–1362 (2000).

  • 63.

    Fleming, I. et al. Isometric contraction induces the Ca2+-independent activation of the endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA 96, 1123–1128 (1999).

  • Source