• 1.

    Allen, S. J. & Koumanova, B. Decolourisation of water/wastewater using adsorption (review). J. Univ. Chem. Technol. Metall. 40, 175–192 (2005).

    CAS  Google Scholar 

  • 2.

    Bidhendi, G. R. N., Torabian, A., Ehsani, H. & Razmkhah, N. Evaluation of industrial dyeing wastewater treatment with coagulants and polyelectrolyte as a coagulant aid. Iran J. Environ. Health Sci. Eng. 4, 29–36 (2007).

    CAS  Google Scholar 

  • 3.

    Jadhav, S. B., Chougule, A. S., Shah, D. P., Pereira, C. S. & Jadhav, J. P. Application of response surface methodology for the optimization of textile effluent biodecolorization and its toxicity perspectives using plant toxicity, plasmid nicking assays. Clean Technol. Environ. 17, 709–720. https://doi.org/10.1007/s10098-014-0827-3 (2015).

    CAS  Article  Google Scholar 

  • 4.

    Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S. & Chimni, S. S. Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Water Res. 39, 5135–5141. https://doi.org/10.1016/j.watres.2005.09.033 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Jadhav, S. B., Phugare, S. S., Patil, P. S. & Jadhav, J. P. Biochemical degradation pathway of textile dye Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. Int. Biodeterior. Biodegrad. 65, 733–743. https://doi.org/10.1016/j.ibiod.2011.04.003 (2011).

    CAS  Article  Google Scholar 

  • 6.

    Lau, W. J. & Ismail, A. F. Polymeri nanofiltration of membranes for textile dye wastewater treatment: preparation, performance, evaluation, transport modeling and fouling control—a review. Desalination 245, 321–348. https://doi.org/10.1016/j.desal.2007.12.058 (2009).

    CAS  Article  Google Scholar 

  • 7.

    Zodi, S., Merzouk, B., Potier, O., Lapicque, F. & Leclerc, J. P. Direct Red 81 dye removal by a continuous flow electrocoagulation/flotation reactor. Sep. Purif. Technol. 108, 215–222. https://doi.org/10.1016/j.seppur.2013.01.052 (2013).

    CAS  Article  Google Scholar 

  • 8.

    Wang, R., Cai, X. & Shen, F. TiO2 hollow microspheres with mesoporous surface: superior adsorption performance for dye removal. Appl. Surf. Sci. 305, 352–358. https://doi.org/10.1016/j.apsusc.2014.03.089 (2014).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Sugiarto, A. T., Ito, S., Ohshima, T., Sato, M. & Skalny, J. D. Oxidative decoloration of dyes by pulsed discharge plasma in water. J. Electrost. 58(1), 135–145. https://doi.org/10.1016/S0304-3886(02)00203-6 (2003).

    CAS  Article  Google Scholar 

  • 10.

    Robinson, T., McMullan, G., Marchant, R. & Nigam, P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77(3), 247–255. https://doi.org/10.1016/s0960-8524(00)00080-8 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Lourenco, N. D. et al. Comparing aerobic granular sludge and flocculent sequencing batch reactor technologies for textile wastewater treatment. Biochem. Eng. J. 104, 57–63. https://doi.org/10.1016/j.bej.2015.04.025 (2015).

    CAS  Article  Google Scholar 

  • 12.

    Sarria, V., Parra, S., Invernizzi, M., Péringer, P. & Pulgarin, C. Photochemicalbiological treatment of a real industrial biorecalcitrant wastewater containing 5-amino-6-methyl-2-benzimidazolone. Water Sci. Technol. 44, 93–101. https://doi.org/10.2166/wst.2001.0259 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Rueda-Marquez, R. R., Sillanpaa, M., Pocostales, P., Acevedo, A. & Manzano, M. A. Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: photolysis and catalytic wet oxidation. Water Res. 71, 85–96. https://doi.org/10.1016/j.watres.2014.12.054 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Oller, I., Malato, S. & Sanchez-Perez, J. A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci. Total Environ. 409, 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 15.

    Chougule, A. S., Jadhav, S. B. & Jadhav, J. P. Microbial degradation and detoxification of synthetic dye mixture by Pseudomonas sp. SUK 1. Proc. Natl. A. Sci. India B 84, 1059–1068. https://doi.org/10.1007/s40011-014-0313-z (2014).

    CAS  Article  Google Scholar 

  • 16.

    El Nemr, A., Hassan, M. A. & Madkour, F. F. Advanced oxidation process (AOP) for detoxification of acid red 17 dye solution and degradation mechanism. Environ. Process. 5, 95–113. https://doi.org/10.1007/s40710-018-0284-9 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Chen, C. C., Wu, P. S. & Chung, Y. C. Coupled biological and photo-Fenton pretreatment system for the removal of di-(2-ethylhexyl) phthalate (DEHP) from water. Bioresour. Technol. 100, 4531–4534. https://doi.org/10.1016/j.biortech.2009.04.020 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 18.

    Vilar, V. J. P. et al. Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale. Water Res 45, 2647–2658. https://doi.org/10.1016/j.watres.2011.02.019 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Kalme, S., Ghodake, G. & Govindwar, S. Red HE7B degradation using desulfonation by Pseudomonas desmolyticum NCIM 2112. Int. Biodeterior. Biodegrad. 60(4), 327–333. https://doi.org/10.1016/j.ibiod.2007.05.006 (2007).

    CAS  Article  Google Scholar 

  • 20.

    Kalyani, D. C., Telke, A. A., Dhanve, R. S. & Jadhav, J. P. Ecofriendly biodegradation and detoxification of reactive red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J. Hazard. Mater. 163, 735–742. https://doi.org/10.1016/j.jhazmat.2008.07.020 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Muñoz, I., Rieradevall, J., Torrades, F., Peral, J. & Doménech, X. Environmental assessment of different solar driven advanced oxidation processes. Sol. Energy 79, 369. https://doi.org/10.1016/j.solener.2005.02.014 (2005).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Harrelkas, F. et al. Photocatalytic and combined anaerobic–photocatalytic treatment of textile Dyes. Chemosphere 72, 1816–1822. https://doi.org/10.1016/j.chemosphere.2008.05.026 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 23.

    Thanavel, M. et al. Combined biological and advanced oxidation process for decolorization of textile dyes. SN Appl. Sci. 1, 97. https://doi.org/10.1007/s42452-018-0111-y (2019).

    CAS  Article  Google Scholar 

  • 24.

    Ghoreishi, S. M. & Haghighi, R. Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chem. Eng. J. 95, 163–169. https://doi.org/10.1016/S1385-8947(03)00100-1 (2003).

    CAS  Article  Google Scholar 

  • 25.

    Tantak, N. P. & Chaudhari, S. Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. J. Hazard. Mater. 136, 698–705. https://doi.org/10.1016/j.jhazmat.2005.12.049 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Lodha, B. & Chaudhari, S. Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. J. Hazard. Mater. 148, 459–466. https://doi.org/10.1016/j.jhazmat.2007.02.061 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Alvares, A. B. C., Diaper, C. & Parsons, S. A. Partial oxidation by ozone to remove recalcitrance from wastewaters—a review. Environ. Technol. 22, 409–427. https://doi.org/10.1080/09593332208618273 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Parshetti, G., Kalme, S., Saratale, G. & Govindwar, S. Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chim. Slov. 53, 492–498 (2006).

    CAS  Google Scholar 

  • 29.

    Senthil-Kumar, S. et al. Bioinformatics aided microbial approach for bioremediation of wastewater containing textile dyes. Ecol. Inform. 31, 112–121. https://doi.org/10.1016/j.ecoinf.2015.12.001 (2016).

    Article  Google Scholar 

  • 30.

    Association, A. P. H. Standard Methods for the Examination of Water and Wastewater 20th edn. (APHA-AWWA-WEF, Washington, DC, USA, 1998).

    Google Scholar 

  • 31.

    Jadhav, U. U., Dawkar, V. V., Tamboli, D. P. & Govindwar, S. P. Purification and characterization of veratryl alcohol oxidase from Comamonas sp. UVS and its role in decolorization of textile dyes. Biotechnol. Bioprocess Eng. 14, 369–376. https://doi.org/10.1007/s12257-008-0300-4 (2009).

    CAS  Article  Google Scholar 

  • 32.

    Hatvani, N. & Mecs, I. Production of laccase and manganese peroxidase by Lentinus edodes on malt containing by product of the brewing process. Process Biochem. 37, 491–496. https://doi.org/10.1016/S0032-9592(01)00236-9 (2001).

    Article  Google Scholar 

  • 33.

    Kurade, M. B., Waghmode, T. R., Tamboli, D. P. & Govindwar, S. P. Differential catalytic action of Brevibacillus laterosporus on two dissimilar azo dyes Remazol red and Rubine GFL. J. Basic Microbiol. 53(2), 136–146. https://doi.org/10.1002/jobm.201100402 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 34.

    Phugare, S., Patil, P., Govindwar, S. & Jadhav, J. Exploitation of yeast biomass generated as a waste product of distillery industry for remediation of textile industry effluent. Int. Biodeter. Biodegrad. 64, 716–726. https://doi.org/10.1016/j.ibiod.2010.08.005 (2010).

    CAS  Article  Google Scholar 

  • 35.

    Bankole, P. O., Adekunle, A. A., Jeon, B.-H. & Govindwar, S. P. Novel cobiomass degradation of NSAIDs by two wood rot fungi, Ganoderma applanatum and Laetiporus sulphureus: ligninolytic enzymes induction, isotherm and kinetic studies. Ecotox. Environ. Safe. 203, 110997. https://doi.org/10.1016/j.ecoenv.2020.110997 (2020).

    CAS  Article  Google Scholar 

  • Source