• 1.

    Prasadh, S. et al. The potential of magnesium based materials in mandibular reconstruction. Metals 9, 302 (2019).

    Article  Google Scholar 

  • 2.

    Angrisani, N. et al. Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model. Acta Biomater. 44, 355–365 (2016).

    PubMed  Article  Google Scholar 

  • 3.

    Ali, M., Hussein, M. A. & Al-Aqeeli, N. Magnesium-based composites and alloys for medical applications: a review of mechanical and corrosion properties. J. Alloy. Compd. 792, 1162–1190 (2019).

    Article  Google Scholar 

  • 4.

    Liu, C. et al. Biodegradable magnesium alloys developed as bone repair materials: a review. Scanning 2018, 9216314 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Dziuba, D. et al. Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant. Acta Biomater. 9, 8548–8560 (2013).

    PubMed  Article  Google Scholar 

  • 6.

    Hiromoto, S., Inoue, M., Taguchi, T., Yamane, M. & Ohtsu, N. In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater. 11, 520–530 (2015).

    PubMed  Article  Google Scholar 

  • 7.

    Kraus, T. et al. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 8, 1230–1238 (2012).

    PubMed  Article  Google Scholar 

  • 8.

    Manakari, V., Parande, G. & Gupta, M. Selective laser melting of magnesium and magnesium alloy powders: a review. Metals 7, 2 (2017).

    Article  Google Scholar 

  • 9.

    Scheideler, L. et al. Comparison of different in vitro tests for biocompatibility screening of Mg alloys. Acta Biomater. 9, 8740–8745 (2013).

    PubMed  Article  Google Scholar 

  • 10.

    Kujur, M. S. et al. Significantly enhancing the ignition/compression/damping response of monolithic magnesium by addition of Sm2O3 nanoparticles. Metals 7, 357 (2017).

    Article  Google Scholar 

  • 11.

    Cui, Z. et al. Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering. Mater. Charact. 151, 620–631 (2019).

    Article  Google Scholar 

  • 12.

    Kujur, M. S. et al. Enhancement of thermal, mechanical, ignition and damping response of magnesium using nano-ceria particles. Ceram. Int. 44, 15035–15043 (2018).

    Article  Google Scholar 

  • 13.

    Brooks, E. K. & Ehrensberger, M. T. Bio-corrosion of magnesium alloys for orthopaedic applications. J. Funct. Biomater. 8, 38 (2017).

    PubMed Central  Article  PubMed  Google Scholar 

  • 14.

    Guo, C.-W., Yu, Q., Sun, B.-Z., Wang, C.-Y. & Yang, J.-X. Evaluation of alveolar bone repair with mineralized collagen block reinforced with Mg–Ca alloy rods. J. Biomater. Tissue Eng. 8, 1–10 (2018).

    Article  Google Scholar 

  • 15.

    Wang, G. et al. Nanostructured glass–ceramic coatings for orthopaedic applications. J. R. Soc. Interface 8, 1192–1203 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Parande, G., Manakari, V., Gupta, H. & Gupta, M. Magnesium-β-tricalcium phosphate composites as a potential orthopedic implant: a mechanical/damping/immersion perspective. Metals 8, 343 (2018).

    Article  Google Scholar 

  • 17.

    Thornby, J. et al. Indentation-based characterization of creep and hardness behavior of magnesium carbon nanotube nanocomposites at room temperature. SN Appl. Sci. 1, 695 (2019).

    Article  Google Scholar 

  • 18.

    Gupta, M., Parande, G. & Manakari, V. In 17th Australian International Aerospace Congress: AIAC 2017. 270 (Engineers Australia, Royal Aeronautical Society).

  • 19.

    Gupta, M. & Wong, W. Magnesium-based nanocomposites: lightweight materials of the future. Mater. Charact. 105, 30–46 (2015).

    Article  Google Scholar 

  • 20.

    Parande, G., Manakari, V., Meenashisundaram, G. K. & Gupta, M. Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates. Int. J. Mater. Res. 107, 1091–1099 (2016).

    Article  Google Scholar 

  • 21.

    Parande, G., Manakari, V., Meenashisundaram, G. K. & Gupta, M. Enhancing the tensile and ignition response of monolithic magnesium by reinforcing with silica nanoparticulates. J. Mater. Res. 32, 2169–2178 (2017).

    Article  Google Scholar 

  • 22.

    Parande, G., Manakari, V., Wakeel, S., Kujur, M. S. & Gupta, M. Enhancing mechanical response of monolithic magnesium using nano-NiTi (Nitinol) particles. Metals 8, 1014 (2018).

    Article  Google Scholar 

  • 23.

    Ong, T. H. D., Yu, N., Meenashisundaram, G. K., Schaller, B. & Gupta, M. Insight into cytotoxicity of Mg nanocomposites using MTT assay technique. Mater. Sci. Eng. 78, 647–652 (2017).

    Article  Google Scholar 

  • 24.

    Yu, X., Yang, K., Chen, X. & Li, W. Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy. Biomaterials 143, 120–129 (2017).

    PubMed  Article  Google Scholar 

  • 25.

    Coll, C. et al. Enzyme‐mediated controlled release systems by anchoring peptide sequences on mesoporous silica supports. Angew. Chem. Int. Ed. 50, 2138–2140 (2011).

    Article  Google Scholar 

  • 26.

    Tallury, P., Payton, K. & Santra, S. Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine 3, 579–592 (2008).

    PubMed  Article  Google Scholar 

  • 27.

    Vivero‐Escoto, J. L., Slowing, I. I., Trewyn, B. G. & Lin, V. S. Y. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6, 1952–1967 (2010).

    PubMed  Article  Google Scholar 

  • 28.

    Krishnan, V. & Lakshmi, T. Bioglass: a novel biocompatible innovation. J. Adv. Pharm. Technol. Res. 4, 78 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Wan, Y. et al. Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route. Mater. Des. 99, 521–527 (2016).

    Article  Google Scholar 

  • 30.

    Beck, G. R. Jr et al. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed. Nanotechnol. Biol. Med. 8, 793–803 (2012).

    Article  Google Scholar 

  • 31.

    Gaihre, B., Lecka-Czernik, B. & Jayasuriya, A. C. Injectable nanosilica–chitosan microparticles for bone regeneration applications. J. Biomater. Appl. 32, 813–825 (2018).

    PubMed  Article  Google Scholar 

  • 32.

    Halas, N. J. Nanoscience under glass: the versatile chemistry of silica nanostructures. ACS Nano 2, 179–183 (2008).

    PubMed  Article  Google Scholar 

  • 33.

    Zhang, X. Q., Chen, G., Wang, Y. & Han, M. Y. Effects of hot extrusion and aging on microstructure and mechanical properties of Mg-Zn-Si-Ca magnesium alloy. Adv. Mater. Res. 668, 823–829 (2013).

    Article  Google Scholar 

  • 34.

    Parande, G., Manakari, V., Sharma Kopparthy, S. D. & Gupta, M. A study on the effect of low-cost eggshell reinforcement on the immersion, damping and mechanical properties of magnesium–zinc alloy. Composites Part B: Eng. 182, 107650 (2019).

  • 35.

    Tun, K. et al. Investigation into tensile and compressive responses of Mg–ZnO composites. Mater. Sci. Technol. 28, 582–588 (2012).

    Article  Google Scholar 

  • 36.

    Hermawan, H. Biodegradable metals: from concept to applications. (Springer Science & Business Media, 2012).

  • 37.

    Song, G. & Atrens, A. Understanding magnesium corrosion—a framework for improved alloy performance. Adv. Eng. Mater. 5, 837–858 (2003).

    Article  Google Scholar 

  • 38.

    Bornapour, M., Muja, N., Shum-Tim, D., Cerruti, M. & Pekguleryuz, M. Biocompatibility and biodegradability of Mg–Sr alloys: the formation of Sr-substituted hydroxyapatite. Acta Biomater. 9, 5319–5330 (2013).

    PubMed  Article  Google Scholar 

  • 39.

    Parande, G. et al. Strength retention, corrosion control and biocompatibility of Mg–Zn–Si/HA nanocomposites. J. Mech. Behav. Biomed. Mater. 103, 103584 (2020).

    PubMed  Article  Google Scholar 

  • 40.

    Grigolato, R. et al. Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect. Int. J. Clin. Exp. Med. 8, 281 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Leonhardt, H., Franke, A., McLeod, N., Lauer, G. & Nowak, A. Fixation of fractures of the condylar head of the mandible with a new magnesium-alloy biodegradable cannulated headless bone screw. Br. J. Oral. Maxillofac. Surg. 55, 623–625 (2017).

    PubMed  Article  Google Scholar 

  • 42.

    Lee, J.-Y. et al. Biomechanical evaluation of magnesium-based resorbable metallic screw system in a bilateral sagittal split ramus osteotomy model using three-dimensional finite element analysis. J. Oral. Maxillofac. Surg. 72, e401–e402 (2014). e413.

    Article  Google Scholar 

  • 43.

    Kejlova, K., Labský, J., Jirova, D. & Bendova, H. Hydrophilic polymers—biocompatibility testing in vitro. Toxicol. Vitr. 19, 957–962 (2005).

    Article  Google Scholar 

  • 44.

    Zhang, E., Yin, D., Xu, L., Yang, L. & Yang, K. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater. Sci. Eng.: C. 29, 987–993 (2009).

    Article  Google Scholar 

  • 45.

    Gu, X., Zheng, Y., Cheng, Y., Zhong, S. & Xi, T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30, 484–498 (2009).

    PubMed  Article  Google Scholar 

  • 46.

    Li, Y. et al. Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Toxicol. Vitr. 25, 1343–1352 (2011).

    Article  Google Scholar 

  • 47.

    Waters, K. M. et al. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol. Sci. 107, 553–569 (2009).

    PubMed  Article  Google Scholar 

  • 48.

    Ye, Y., Liu, J., Chen, M., Sun, L. & Lan, M. In vitro toxicity of silica nanoparticles in myocardial cells. Environ. Toxicol. Pharmacol. 29, 131–137 (2010).

    PubMed  Article  Google Scholar 

  • 49.

    Lanone, S. et al. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. fibre Toxicol. 6, 14 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Amaravathy, P., Sowndarya, S., Sathyanarayanan, S. & Rajendran, N. Novel sol gel coating of Nb2O5 on magnesium alloy for biomedical applications. Surf. Coat. Technol. 244, 131–141 (2014).

    Article  Google Scholar 

  • 51.

    Park, J. W., Kim, Y. J., Jang, J. H. & Song, H. Osteoblast response to magnesium ion‐incorporated nanoporous titanium oxide surfaces. Clin. Oral Implants Res. 21, 1278–1287 (2010).

    PubMed  Article  Google Scholar 

  • 52.

    Zreiqat, H. et al. Mechanisms of magnesium‐stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 62, 175–184 (2002).

    PubMed  Article  Google Scholar 

  • 53.

    Lipski, A. M., Pino, C. J., Haselton, F. R., Chen, I.-W. & Shastri, V. P. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials 29, 3836–3846 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Altankov, G. & Groth, T. Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. J. Mater. Sci. 5, 732–737 (1994).

    Google Scholar 

  • 55.

    Hughes, S. & McCarthy, I. D. Sciences basic to orthopaedics. (WB Saunders, 1998).

  • 56.

    Daegling, D. J. & Hylander, W. L. Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form. Am. J. Phys. Anthropol. 112, 541–551 (2000).

    PubMed  Article  Google Scholar 

  • 57.

    Prasadh, S. et al. Biomechanics of alloplastic mandible reconstruction using biomaterials: the effect of implant design on stress concentration influences choice of material. J. Mech. Behav. Biomed. Mater. 103, 103548 (2020).

    PubMed  Article  Google Scholar 

  • 58.

    Flanagan, D., Ilies, H., McCullough, P. & McQuoid, S. Measurement of the fatigue life of mini dental implants: a pilot study. J. Oral. Implantol. 34, 7–11 (2008).

    PubMed  Article  Google Scholar 

  • 59.

    Harada, K., Watanabe, M., Ohkura, K. & Enomoto, S. Measure of bite force and occlusal contact area before and after bilateral sagittal split ramus osteotomy of the mandible using a new pressure-sensitive device: a preliminary report. J. Oral Maxillofac. Surg. 58, 370–373 (2000).

    PubMed  Article  Google Scholar 

  • 60.

    Madsen, M. J. & Haug, R. H. A biomechanical comparison of 2 techniques for reconstructing atrophic edentulous mandible fractures. J. Oral Maxillofac. Surg. 64, 457–465 (2006).

    PubMed  Article  Google Scholar 

  • 61.

    Wedel, A., Yontchev, E., Carlsson, G. E. & Ow, R. Masticatory function in patients with congenital and acquired maxillofacial defects. J. Prosthet. Dent. 72, 303–308 (1994).

    PubMed  Article  Google Scholar 

  • 62.

    Wong, R., Tideman, H., Kin, L. & Merkx, M. Biomechanics of mandibular reconstruction: a review. Int. J. oral. Maxillofac. Surg. 39, 313–319 (2010).

    PubMed  Article  Google Scholar 

  • 63.

    Curtis, D., Plesh, O., Hannam, A., Sharma, A. & Curtis, T. Modeling of jaw biomechanics in the reconstructed mandibulectomy patient. J. Prosthet. Dent. 81, 167–173 (1999).

    PubMed  Article  Google Scholar 

  • 64.

    Gupta, M. & Ling, S. N. M. Magnesium, magnesium alloys, and magnesium composites. (John Wiley & Sons, 2011).

  • 65.

    Manakari, V., Parande, G., Doddamani, M. & Gupta, M. Enhancing the ignition, hardness and compressive response of magnesium by reinforcing with hollow glass microballoons. Materials (Basel) 10, https://doi.org/10.3390/ma10090997 (2017).

  • Source