• 1.

    Kumar, S. et al. Challenges and opportunities associated with waste management in India. R. Soc. Open Sci. 4, 160–164. https://doi.org/10.1098/rsos.160764 (2017).

    Article  Google Scholar 

  • 2.

    Mageswari, S. et al. Contamination of groundwater quality due to municipal solid waste disposal—a GIS-based study in Perungudi Dump Yard. Int. J. Eng. Technol. 4, 952–964 (2017).

    Google Scholar 

  • 3.

    Alexander, R. Compost markets grow with environmental applications. Biocycle 40, 4 (1999).

    Google Scholar 

  • 4.

    Gautam, S. P., Bundela, P. S., Pandey, A. K. & Sarsaiya, S. Composting of municipal solid waste of Jabalpur City Central Pollution Control Board, New Delhi, India. Glob. J. Environ. Res. 4, 43–46 (2010).

    CAS  Google Scholar 

  • 5.

    Guo, R. et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 112, 171–178. https://doi.org/10.1016/j.biortech.2012.02.099 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Pan, I., Dam, B. & Sen, S. K. Composting of common organic wastes using microbial inoculants. 3 Biotech 2, 127–134. https://doi.org/10.1007/s13205-011-0033-5 (2012).

    Article  Google Scholar 

  • 7.

    Pichler, M., Knicker, H. & Kogel-Knabner, I. Changes in the chemical structure of municipal solid waste during composting as studied by solid-state dipolar dephasing and PSRE 13C NMR and solid-state 15N NMR spectroscopy. Environ. Sci. Technol. 34, 4034–4038 (2000).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Steger, K., Sjögren, Å. M., Jarvis, Å., Jansson, J. K. & Sundh, I. Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste. J. Appl. Microbiol. 103, 487–498. https://doi.org/10.1111/j.1365-2672.2006.03271.x (2007).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Tiquia, S. M. & Tam, N. F. Y. Co-composting of spent pig litter and sludge with forced-aeration. Bioresour. Technol. 72, 1–7. https://doi.org/10.1016/S0960-8524(99)90092-5 (2000).

    CAS  Article  Google Scholar 

  • 10.

    Zhu, N. Composting of high moisture content swine manure with corncob in a pilot-scale aerated static bin system. Bioresour. Technol. 97, 1870–1875. https://doi.org/10.1016/j.biortech.2005.08.011 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Finstein, M. S., Miller, F. C. & Psarianos, K. M. Composting Ecosystem Management for Waste Treatment. Nat. Biotechnol. 1, 347–353 (1983).

    CAS  Article  Google Scholar 

  • 12.

    Kayhanian, M. & Tchobanoglous, G. Computations of C/N ratio for various organic fractions. Biocycle 33, 58–60 (1992).

    CAS  Google Scholar 

  • 13

    Elving, J., Ottoson, J. R., Vinneras, B. & Albihn, A. Growth potential of feacal bacteria in simulated psychrophilic/ mesophilic zones during composting of organic waste. J. Appl. Microbiol. 108(6), 1974–1981 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 14

    Erickson, M. C., Liao, J., Ma, L., Jiang, X. & Doyle, M. P. Inactivation of Salmonella spp. in cow manure composts formulated to different initial C:N ratios. Bioresour. Technol. 100, 5898–5903. https://doi.org/10.1016/j.biortech.2009.06.083 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Fourti, O., Jedidi, N. & Hassen, A. Comparison of methods for evaluating stability and maturity of co-composting of municipal solid wastes and sewage sludge in semi-arid pedo-climatic condition. Nat. Sci. 03, 124–135. https://doi.org/10.4236/ns.2011.32018 (2011).

    CAS  Article  Google Scholar 

  • 16.

    Sanmanee, N., Panishkan, K., Obsuwan, K. & Dharmvanij, S. Study of compost maturity during humification process using UV-spectroscopy. World Acad. Sci. Eng. Technol. 80, 403–405 (2011).

    Google Scholar 

  • 17.

    Wu, L. & Ma, L. Q. Relationship between compost stability and extractable organic carbon. J. Environ. Qual. 31, 1323–1328. https://doi.org/10.2134/jeq2002.1323 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Mukai, S. & Oyanagi, W. Decomposition characteristics of indigenous organic fertilizers and introduced quick compost and their short-term nitrogen availability in the semi-arid ethiopian rift valley. Sci. Rep. 1, 1–11 (2019).

    Google Scholar 

  • 19.

    Ryckeboer, J., Mergaert, J., Coosemans, K. & Deprins, J. Swings, Microbiological aspects of biowaste during composting in a monitored compost bin. J. Appl. Microbiol. 94, 1 (2002).

    Google Scholar 

  • 20.

    Finstein, M. S., Miller, F. C. & Strom, P. F. Waste treatment composting as a controlled system. Biotechnology 8, 363–398 (1986).

    CAS  Google Scholar 

  • 21

    Kumar, S., Sakhale, A. & Mukherjee, S. Simplified Kinetic Analysis for Composting of Municipal Solid Waste. Pract. Period. Hazardous Toxic. Radioact. Waste Manag. 13, 179–186. https://doi.org/10.1061/(ASCE)1090-025X(2009)13:3(179) (2009).

    CAS  Article  Google Scholar 

  • 22.

    Diaz, M. J., Madejon, E., Lopez, F., Lopez, R. & Cabrera, F. Optimization of the rate vinasse/grape marc for co-composting process. ProcessBiochem. 37, 1143–1150 (2002).

    CAS  Google Scholar 

  • 23.

    Rynk, R. (ed.) On-farm composting handbook (Northeast Regional Agricultural Engineering Service, Ithaca, NY, 1992).

    Google Scholar 

  • 24.

    Brodie, H. L., Carr, L. E. & Condon, P. A comparison of static pile and turned windrow methods for poultry litter compost production. Compost Sci. Util. 8, 178–189. https://doi.org/10.1080/1065657X.2000.10701990 (2000).

    Article  Google Scholar 

  • 25.

    Antunes, L. P., Martins, L. F. & Setubal, J. C. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Sci. Rep. 6, 1–13 (2016).

    Article  Google Scholar 

  • 26.

    Himanen, M. & Hänninen, K. Composting of bio-waste, aerobic and anaerobic sludges – Effect of feedstock on the process and quality of compost. Bioresour. Technol. 102, 2842–2852. https://doi.org/10.1016/j.biortech.2010.10.059 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Jokela, J. et al. Aerobic composting and anaerobic digestion of pulp and paper mill sludges. Water Sci. Technol. 36, 181–188. https://doi.org/10.1016/S0273-1223(97)00680-X (1997).

    CAS  Article  Google Scholar 

  • 28.

    Kalemelawa, F. et al. An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresour. Technol. 126, 375–382. https://doi.org/10.1016/j.biortech.2012.04.030 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Rihani, M. et al. In-vessel treatment of urban primary sludge by aerobic composting. Bioresour. Technol. 101, 5988–5995. https://doi.org/10.1016/j.biortech.2010.03.007 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Zhu, N. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Bioresour. Technol. 98, 9–13 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    He, Y. et al. Evolution of microbial community diversity and enzymatic activity during composting. Res. Microbiol. 164, 189–198. https://doi.org/10.1016/j.resmic.2012.11.001 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 32.

    Ohtaki, A. N., Sato, N. & Nakasaki, K. Biodegradation of poly-Ɛ-caprolactone under controlled composting conditions. Polym. Degrad. Stab. 61, 499–505 (1998).

    CAS  Article  Google Scholar 

  • 33.

    Sobrate, N., Mohee, M.F., Driver, A., Mudhoo, Survival kinetics of faecal bacterial indicators in spent broiler litter composting, J. Appl. Microbiol. 104, (2007)

  • 34.

    Gabhane, J. et al. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresour. Technol. 114, 382–388. https://doi.org/10.1016/j.biortech.2012.02.040 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Partanen, P., Hultman, J., Paulin, L., Auvinen, P. & Romantschuk, M. Bacterial diversity at different stages of the composting process. BMC Microbiol. 10, 94. https://doi.org/10.1186/1471-2180-10-94 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Iqbal, M. K., Shafiq, T. & Ahmed, K. Characterization of bulking agents and its effects on physical properties of compost. Bioresour. Technol. 101, 1913–1919. https://doi.org/10.1016/j.biortech.2009.10.030 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    APHA, Standard Methods for the Examination of Water and Waste Water; 20 th Ed. American Public Health association; American Water Works Association Water Pollution Control Federation. Washington. DC, USA. 126–130 (1998).

  • 38.

    Lawal-Akinlami, H. A. & Shanmugam, P. Comparison of biochemical methane potential and methanogen morphology of different organic solid wastes co-digested anaerobically with treatment plant sludge. Process Saf. Environ. Prot. 107, 216–226. https://doi.org/10.1016/j.psep.2017.02.001 (2017).

    CAS  Article  Google Scholar 

  • 39.

    Razmjoo, P., Pourzamani, H., Teiri, H. & Hajizadeh, Y. Determination of an empirical formula for organic composition of mature compost produced in Isfahan-Iran composting plant in 2013. Int. J. Environ. Health Eng. 4, 1–6. https://doi.org/10.4103/2277-9183.153988 (2015).

    CAS  Article  Google Scholar 

  • 40.

    Channiwala, S. A. & Parikh, P. P. A unified correlation forestimating HHV of solid, liquid and gaseous fuels. Fuel 81, 1051–1063 (2002).

    CAS  Article  Google Scholar 

  • 41.

    Pellera, F. M., Pasparakis, E. & Gidarakos, E. Consecutive anaerobic-aerobic treatment of the organic fraction of municipal solid waste and lignocellulosic materials in laboratory-scale landfill-bioreactors. Waste Manag. (Oxford) 56, 181–189 (2016).

    CAS  Article  Google Scholar 

  • 42.

    Rittmann, B.E., McCarty, P.L., Environmental biotechnology:principles and applications. In: Stoichiometry and Bacterial Energetic. McGraw Hill Education Inc., New Delhi, India, 2, 126–130, (2012).

  • 43.

    Kalamdhad, A. S. & Kazmi, A. A. Rotary drum composting of different organic waste mixtures. Waste Manag. Res. 27, 129–137. https://doi.org/10.1177/0734242X08091865 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Kong, Z. et al. Evolution of various fractions during the windrow composting of chicken manure with rice chaff. J. Environ. Manag. 207, 366–377. https://doi.org/10.1016/j.jenvman.2017.11.023 (2018).

    CAS  Article  Google Scholar 

  • 45.

    Beffa, T. et al. Isolation of Thermus Strains from Hot Composts (60 to 80°C). Appl. Environ. Microbiol. 62, 1723–1727 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Chang, Y. The fungi of wheat straw compost. Trans. Br. Mycol. Soc. 50, 667–677. https://doi.org/10.1016/S0007-1536(67)80098-6 (1967).

    Article  Google Scholar 

  • 47.

    Gray, K. R., Sherman, K. & Diddlestone, A. J. A review of composting: Part 1. Process Biochem. 31, 32–36 (1971).

    Google Scholar 

  • 48.

    Strom, P. F. Identification of thermophilic bacteria in solid waste composting. Appl. Environ. Microbiol. 50, 906–913 (1985).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Khan, H. Z., Malik, M. A. & Saleem, M. F. Effect of rate and source of organic material on the production potential of spring maize (Zea mays L). Pak. J. Agric. Sci. 45, 40–43 (2008).

    Google Scholar 

  • 50.

    Zorpas, A. A. et al. Compost produced from organic fraction of municipal solid waste, primary stabilized sewage sludge and natural zeolite. J. Hazard. Mater. 77, 149–159. https://doi.org/10.1016/S0304-3894(00)00233-8 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 51.

    Chai, E. W. et al. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia. Environ. Technol. 20, 2859–2866. https://doi.org/10.1080/09593330.2013.795988 (2013).

    CAS  Article  Google Scholar 

  • 52.

    Awasthi, M. K., Pandey, A. K., Bundela, P. S. & Khan, J. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: Characterization of physicochemical parameters and microbial enzymatic dynamic. Bioresour. Technol. 182, 200–207. https://doi.org/10.1016/j.biortech.2015.01.104 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Karak, T., Bhagat, R. M. & Bhattacharyya, P. Municipal solid waste generation, composition, and management: the world scenario. Crit. Rev. Environ. Sci. Technol. 42, 1509–1630. https://doi.org/10.1080/10643389.2011.569871 (2012).

    CAS  Article  Google Scholar 

  • 54.

    Makan, A. & Mountadar, M. Effect of C/N ratio on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco. J. Mater. Cycles Waste Manag. 14, 241–249. https://doi.org/10.1007/s10163-012-0062-0 (2012).

    CAS  Article  Google Scholar 

  • 55.

    Makan, A., Assobhei, O. & Mountadar, M. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco. Iran. J. Environ. Health Sci. Eng. 10, 1–9. https://doi.org/10.1186/1735-2746-10-3 (2013).

    Article  Google Scholar 

  • 56.

    Fialho, L. L., da Silva, W. T. L., Milori, D., Simoes, M. L. & Martin-Neto, L. Characterization of organic matter from composting of different residues by physicochemical and spectroscopic methods. Bioresour. Technol. 101, 1927–1934 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 57.

    Clesceri, N. L. Special issue: monitoring and characterization techniques for contaminants in the subsurface. J. Environ. Eng. ASCE. 124, 489 (1998).

    CAS  Article  Google Scholar 

  • 58.

    Stainforth, A. R. Cereal Straw (Clarendon Press, Oxford, 1979).

    Google Scholar 

  • 59.

    Raclavska, H., Juchelkova, D., Skrobankova, H., Wiltowski, T. & Campen, A. Conditions for energy generation as an alternative approach to compost utilization. Environ. Technol. 32(4), 407–417. https://doi.org/10.1080/09593330.2010.501089 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 60.

    Ekinci, K., Keener, H. M. & Akbolat, D. Effects of feedstock, airflow rate, and recirculation ratio on performance of composting systems with air recirculation. Biores. Technol. 97, 922–932 (2006).

    CAS  Article  Google Scholar 

  • 61.

    Steppa, M. Two options for energy recovery from waste biomass. MaszynyiCiagnikiRolnicze. 3, 85–89 (1988).

    Google Scholar 

  • 62.

    Sobel, T. & Muck, R. E. Energy in animal manures. Energy Agric. 2, 161–176 (1983).

    Article  Google Scholar 

  • 63.

    Harper, E., Miller, F. C. & Macauley, B. J. Physical management and interpretation of an environmentally controlled composting ecosystem. Aust. J. Exp. Agric. 32, 657–667 (1992).

    Article  Google Scholar 

  • 64.

    Hu, Z. et al. Characterization of organic matter degradation during composting of manure-straw mixtures spiked with tetracyclines. Bioresour. Technol. 102, 7329–7334. https://doi.org/10.1016/j.biortech.2011.05.003 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 65.

    Saha, J. K., Panwar, N. & Singh, M. V. An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices. Waste Manag. 30, 192–201. https://doi.org/10.1016/j.wasman.2009.09.041 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Xi, B., Zhang, G. & Liu, H. Process kinetics of inoculation composting of municipal solid waste. J. Hazard. Mater. 124, 165–172. https://doi.org/10.1016/j.jhazmat.2005.04.026 (2005).

    CAS  Article  PubMed  Google Scholar 

  • Source