• 1.

    Fowler, J. F., Woolery-Lloyd, H., Waldorf, H. & Saini, R. Innovations in natural ingredients and their use in skin care. J. Drugs Dermatol. 9, S72–S81 (2010) (quiz s82–3).

    PubMed  Google Scholar 

  • 2.

    He, C.-N. et al. Phytochemical and biological studies of Paeoniaceae. Chem. Biodivers. 7, 805–838 (2010).

    CAS  Article  Google Scholar 

  • 3.

    Dienaitė, L. et al. Isolation of strong antioxidants from paeonia officinalis roots and leaves and evaluation of their bioactivities. Antioxidants 8, 249 (2019).

    Article  CAS  Google Scholar 

  • 4.

    Xu, S.-P. Antiproliferation and apoptosis induction of paeonol in HepG 2 cells. World J. Gastroenterol. 13, 250 (2007).

    CAS  Article  Google Scholar 

  • 5.

    Guo, J.-P. In vitro screening of traditionally used medicinal plants in China against Enteroviruses. World J. Gastroenterol. 12, 4078 (2006).

    Article  Google Scholar 

  • 6.

    Zheng, Y.-Q., Wei, W., Zhu, L. & Liu, J.-X. Effects and mechanisms of Paeoniflorin, a bioactive glucoside from paeony root, on adjuvant arthritis in rats. Inflamm. Res. 56, 182–188 (2007).

    CAS  Article  Google Scholar 

  • 7.

    Yang, H. O., Ko, W. K., Kim, J. Y. & Ro, H. S. Paeoniflorin: An antihyperlipidemic agent from Paeonia lactiflora. Fitoterapia 75, 45–49 (2004).

    CAS  Article  Google Scholar 

  • 8.

    Ning, C., Jiang, Y., Meng, J., Zhou, C. & Tao, J. Herbaceous peony seed oil: A rich source of unsaturated fatty acids and γ-tocopherol. Eur. J. Lipid Sci. Technol. 117, 532–542 (2015).

    CAS  Article  Google Scholar 

  • 9.

    Papandreou, V. et al. Volatiles with antimicrobial activity from the roots of Greek Paeonia taxa. J. Ethnopharmacol. 81, 101–104 (2002).

    CAS  Article  Google Scholar 

  • 10.

    Chaita, E. et al. Anti-melanogenic properties of Greek plants. A novel depigmenting agent from Morus alba wood. Molecules 22, 514 (2017).

    Article  CAS  Google Scholar 

  • 11.

    Ali, A. M. A., El-Nour, M. E. M. & Yagi, S. M. Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J. Genet. Eng. Biotechnol. 16, 677–682 (2018).

    Article  Google Scholar 

  • 12.

    Esmaeili, A. K., Taha, R. M., Mohajer, S. & Banisalam, B. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (red clover). Biomed. Res. Int. 2015, 1–11 (2014).

    Article  CAS  Google Scholar 

  • 13.

    Dilkalal, A. & Umesh, T. G. Evaluation of antioxidant potential and reducing power of callus induced from leaves of a Systasia Gangetica (L.) T. Anderson. Int. J. Pharm. Pharm. Sci. 6, 532–538 (2014).

    Google Scholar 

  • 14.

    Crouch, S. P. M., Kozlowski, R., Slater, K. J. & Fletcher, J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods 160, 81–88 (1993).

    CAS  Article  Google Scholar 

  • 15.

    Deters, A. M., Schröder, K. R. & Hensel, A. Kiwi fruit (Actinidia chinensis L.) polysaccharides exert stimulating effects on cell proliferation via enhanced growth factor receptors, energy production, and collagen synthesis of human keratinocytes, fibroblasts, and skin equivalents. J. Cell. Physiol. 202, 717–722 (2005).

    CAS  Article  Google Scholar 

  • 16.

    Tsai, H.-Z., Lin, R.-K. & Hsieh, T.-S. Drosophila mitochondrial topoisomerase III alpha affects the aging process via maintenance of mitochondrial function and genome integrity. J. Biomed. Sci. 23, 38 (2016).

    Article  CAS  Google Scholar 

  • 17.

    Giampieri, F. et al. Polyphenol-rich strawberry extract protects human dermal fibroblasts against hydrogen peroxide oxidative damage and improves mitochondrial functionality. Molecules 19, 7798–7816 (2014).

    Article  CAS  Google Scholar 

  • 18.

    Sulyok, S., Wankell, M., Alzheimer, C. & Werner, S. Activin: An important regulator of wound repair, fibrosis, and neuroprotection. Mol. Cell. Endocrinol. 225, 127–132 (2004).

    CAS  Article  Google Scholar 

  • 19.

    Jones, K. L., de Kretser, D. M., Patella, S. & Phillips, D. J. Activin A and follistatin in systemic inflammation. Mol. Cell. Endocrinol. 225, 119–125 (2004).

    CAS  Article  Google Scholar 

  • 20.

    Eisinger, M., Sadan, S., Silver, I. A. & Flick, R. B. Growth regulation of skin cells by epidermal cell-derived factors: Implications for wound healing. Proc. Natl. Acad. Sci. 85, 1937–1941 (1988).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    CAS  Article  Google Scholar 

  • 22.

    Koch, A. et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science (80-). 258, 1798–1801 (1992).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Esposito, E. & Cuzzocrea, S. TNF-alpha as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Curr. Med. Chem. 16, 3152–3167 (2009).

    CAS  Article  Google Scholar 

  • 24.

    Danti, S. et al. Chitin nanofibrils and nanolignin as functional agents in skin regeneration. Int. J. Mol. Sci. 20, 2669 (2019).

    CAS  Article  Google Scholar 

  • 25.

    Coltelli, M.-B. et al. Properties and skin compatibility of films based on poly(lactic acid) (PLA) bionanocomposites incorporating chitin nanofibrils (CN). J. Funct. Biomater. 11, 21 (2020).

    CAS  Article  Google Scholar 

  • 26.

    Azimi, B. et al. Electrosprayed chitin nanofibril/electrospun polyhydroxyalkanoate fiber mesh as functional nonwoven for skin application. J. Funct. Biomater. 11, 62 (2020).

    CAS  Article  Google Scholar 

  • 27.

    Donnarumma, G. et al. β-defensins: Work in progress. in 59–76 (2015). https://doi.org/10.1007/5584_2015_5016.

  • 28.

    Fusco, A. et al. Beta-defensin-2 and beta-defensin-3 reduce intestinal damage caused by salmonella typhimurium modulating the expression of cytokines and enhancing the probiotic activity of Enterococcus faecium. J. Immunol. Res. 2017, 1–9 (2017).

    Article  CAS  Google Scholar 

  • 29.

    Johansen, C., Bertelsen, T., Ljungberg, C., Mose, M. & Iversen, L. Characterization of TNF-α- and IL-17A-mediated synergistic induction of defb4 gene expression in human keratinocytes through IκBζ. J. Invest. Dermatol. 136, 1608–1616 (2016).

    CAS  Article  Google Scholar 

  • 30.

    Adorno-Cruz, V. & Liu, H. Regulation and functions of integrin α2 in cell adhesion and disease. Genes Dis. 6, 16–24 (2019).

    CAS  Article  Google Scholar 

  • 31.

    Cheli, Y. et al. Transcriptional and epigenetic regulation of the integrin collagen receptor locus ITGA1-PELO-ITGA2. Biochim. Biophys. Acta Gene Struct. Expr. 1769, 546–558 (2007).

    CAS  Article  Google Scholar 

  • 32.

    Li, D. & Mrsny, R. J. Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. J. Cell Biol. 148, 791–800 (2000).

    CAS  Article  Google Scholar 

  • 33.

    Miyagawa, M. et al. Glycosylceramides purified from the japanese traditional non-pathogenic fungus aspergillus and koji increase the expression of genes involved in tight junctions and ceramide delivery in normal human epidermal keratinocytes. Fermentation 5, 43 (2019).

    CAS  Article  Google Scholar 

  • 34.

    Pummi, K. et al. Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes. J. Invest. Dermatol. 117, 1050–1058 (2001).

    CAS  Article  Google Scholar 

  • 35.

    Jia, Z. et al. Calycosin alleviates allergic contact dermatitis by repairing epithelial tight junctions via down-regulating HIF-1α. J. Cell. Mol. Med. 22, 4507–4521 (2018).

    CAS  Article  Google Scholar 

  • 36.

    Chen, D. et al. Abnormal expression of paxillin correlates with tumor progression and poor survival in patients with gastric cancer. J. Transl. Med. 11, 277 (2013).

    Article  CAS  Google Scholar 

  • 37.

    Turner, C. E. Paxillin and focal adhesion signalling. Nat. Cell Biol. 2, E231–E236 (2000).

    CAS  Article  Google Scholar 

  • 38.

    Sando, G. N. et al. Caveolin expression and localization in human keratinocytes suggest a role in lamellar granule biogenesis. J. Invest. Dermatol. 120, 531–541 (2003).

    CAS  Article  Google Scholar 

  • 39.

    Blouin, C. M. et al. Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J. Lipid Res. 51, 945–956 (2010).

    CAS  Article  Google Scholar 

  • 40.

    Ovaere, P., Lippens, S., Vandenabeele, P. & Declercq, W. The emerging roles of serine protease cascades in the epidermis. Trends Biochem. Sci. 34, 453–463 (2009).

    CAS  Article  Google Scholar 

  • 41.

    De Benedetto, A., Kubo, A. & Beck, L. A. Skin Barrier Disruption: A Requirement for Allergen Sensitization?. J. Invest. Dermatol. 132, 949–963 (2012).

    Article  CAS  Google Scholar 

  • 42.

    Kishibe, M. Physiological and pathological roles of kallikrein-related peptidases in the epidermis. J. Dermatol. Sci. 95, 50–55 (2019).

    CAS  Article  Google Scholar 

  • 43.

    de Koning, H. D. et al. Expression profile of cornified envelope structural proteins and keratinocyte differentiation-regulating proteins during skin barrier repair. Br. J. Dermatol. 166, 1245–1254 (2012).

    Article  Google Scholar 

  • 44.

    Anderson, C. M. & Stahl, A. SLC27 fatty acid transport proteins. Mol. Aspects Med. 34, 516–528 (2013).

    CAS  Article  Google Scholar 

  • 45.

    Khnykin, D., Miner, J. H. & Jahnsen, F. Role of fatty acid transporters in epidermis. Dermatoendocrinology 3, 53–61 (2011).

    CAS  Article  Google Scholar 

  • 46.

    Lehner, R. & Quiroga, A. D. Fatty acid handling in mammalian cells. in Biochemistry of Lipids, Lipoproteins and Membranes 149–184 (Elsevier, 2016). https://doi.org/10.1016/B978-0-444-63438-2.00005-5.

  • 47.

    Amen, N. et al. Differentiation of epidermal keratinocytes is dependent on glucosylceramide:ceramide processing. Hum. Mol. Genet. 22, 4164–4179 (2013).

    CAS  Article  Google Scholar 

  • 48.

    Kolter, T. & Sandhoff, K. Sphingolipids—Their metabolic pathways and the pathobiochemistry of neurodegenerative diseases. Angew. Chemie Int. Ed. 38, 1532–1568 (1999).

    CAS  Article  Google Scholar 

  • 49.

    Furuse, M. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier. J. Cell Biol. 156, 1099–1111 (2002).

    CAS  Article  Google Scholar 

  • 50.

    Radner, F. P. W. et al. Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI-58). J. Biol. Chem. 285, 7300–7311 (2010).

    CAS  Article  Google Scholar 

  • 51.

    Scharschmidt, T. C. et al. Filaggrin deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens. J. Allergy Clin. Immunol. 124, 496-506.e6 (2009).

    CAS  Article  Google Scholar 

  • 52.

    Macheleidt, O., Sandhoff, K. & Kaiser, H. W. Deficiency of epidermal protein-bound ω-hydroxyceramides in atopic dermatitis. J. Invest. Dermatol. 119, 166–173 (2002).

    CAS  Article  Google Scholar 

  • 53.

    Li, Y. et al. Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp.. Chem. Pharm. Bull. (Tokyo). https://doi.org/10.1248/cpb.52.375 (2004).

    Article  PubMed  Google Scholar 

  • 54.

    Hong, K.-K., Cho, H.-R., Ju, W.-C., Cho, Y. & Kim, N.-I. A study on altered expression of serine palmitoyltransferase and ceramidase in psoriatic skin lesion. J. Korean Med. Sci. 22, 862 (2007).

    CAS  Article  Google Scholar 

  • 55.

    Hannun, Y. A. & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175–191 (2018).

    CAS  Article  Google Scholar 

  • 56.

    Holleran, W. M., Takagi, Y. & Uchida, Y. Epidermal sphingolipids: Metabolism, function, and roles in skin disorders. FEBS Lett. 580, 5456–5466 (2006).

    CAS  Article  Google Scholar 

  • 57.

    Wennekes, T. et al. Glycosphingolipids-nature, function, and pharmacological modulation. Angew. Chemie Int. Ed. 48, 8848–8869 (2009).

    CAS  Article  Google Scholar 

  • 58.

    van Smeden, J., Janssens, M., Gooris, G. S. & Bouwstra, J. A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841, 295–313 (2014).

    Article  CAS  Google Scholar 

  • 59.

    Ishikawa, J. et al. Changes in the ceramide profile of atopic dermatitis patients. J. Invest. Dermatol. 130, 2511–2514 (2010).

    CAS  Article  Google Scholar 

  • 60.

    Faller, C., Bracher, M., Dami, N. & Roguet, R. Predictive ability of reconstructed human epidermis equivalents for the assessment of skin irritation of cosmetics. Toxicol. Vitr. 16, 557–572 (2002).

    CAS  Article  Google Scholar 

  • 61.

    Cannon, C. L., Neal, P. J., Southee, J. A., Kubilus, J. & Klausner, M. New epidermal model for dermal irritancy testing. Toxicol. Vitr. 8, 889–891 (1994).

    CAS  Article  Google Scholar 

  • 62.

    Murashige, Skoog. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–492 (1962).

  • 63.

    Chakraborthy, G. S. & Ghorpade, P. M. Free radical scavenging activity of Abutilon indicum (Linn) sweet stem extracts. Int. J. ChemTech Res. 2, 526–531 (2010).

    CAS  Google Scholar 

  • 64.

    Brand-Williams, W., Cuvelier, M. E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. Leb. Technol. 30, 25–30 (1995).

    Google Scholar 

  • 65.

    Molyneux. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci Technol. 26, 211–219 (2003).

  • 66.

    Letsiou, S. et al. In vitro protective effects of marine-derived Aspergillus puulaauensis TM124-S4 extract on H2O2-stressed primary human fibroblasts. Toxicol. Vitr. 66, 104869 (2020).

    CAS  Article  Google Scholar 

  • 67.

    Letsiou, S., Kapazoglou, A. & Tsaftaris, A. Transcriptional and epigenetic effects of Vitis vinifera L. leaf extract on UV-stressed human dermal fibroblasts. Mol. Biol. Rep. 47, 5763–5772 (2020).

    CAS  Article  Google Scholar 

  • 68.

    Letsiou, S. et al. Skin protective effects of Nannochloropsis gaditana extract on H2O2-stressed human dermal fibroblasts. Front. Mar. Sci. 4, (2017).

  • 69.

    Ramakers, C., Ruijter, J. M., Deprez, R. H. L. & Moorman, A. F. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66 (2003).

    CAS  Article  Google Scholar 

  • 70.

    Löwenau, L. J. et al. Increased permeability of reconstructed human epidermis from UVB-irradiated keratinocytes. Eur. J. Pharm. Biopharm. 116, 149–154 (2017).

    Article  CAS  Google Scholar 

  • Source