• 1.

    Johnson, K. L., Gidley, M. J., Bacic, A. & Doblin, M. S. Cell wall biomechanics: a tractable challenge in manipulating plant cell walls ‘fit for purpose’. Curr. Opin. Biotech. 49, 163–171 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 2.

    Pieczywek, P. M. & Zdunek, A. Compression simulations of plant tissue in 3D using a mass-spring system approach and discrete element method. Soft Matter 13, 7318–7331 (2017).

    CAS  Article  Google Scholar 

  • 3.

    Cosgrove, D. J. Re-constructing our models of cellulose and primary cell wall assembly. Curr. Opin. Plant Biol. 22, 122–131 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Cosgrove, D. J. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J. Exp. Bot. 67, 463–476 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Cosgrove, D. J. Diffuse growth of plant cell walls. Plant Physiol. 176, 16–27 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Jarvis, M. C. Plant cell walls: supramolecular assemblies. Food Hydrocoll. 25, 257–262 (2011).

    CAS  Article  Google Scholar 

  • 7.

    Whitney, S. E. C., Gothard, M. G. E., Mitchell, J. T. & Gidley, M. J. Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol. 121, 657–663 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Harholt, J., Suttangkakul, A. & Scheller, H. V. Biosynthesis of pectin. Plant Physiol. 153, 384–395 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Jarvis, M. C., Briggs, S. P. H. & Knox, J. P. Intercellular adhesion and cell separation in plants. Plant Cell Environ. 26, 977–989 (2003).

    Article  Google Scholar 

  • 10.

    Wang, D., Yates, T. H., Uluisik, S., Rose, J. K. C. & Seymour, G. B. Fruit softening: revisiting the role of pectin. Trends Plant Sci. 23, 302–310 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Qin, X., Yamauchi, R., Aizawa, K., Inakuma, T. & Kat, K. Isolation and characterization of arabinogalactan-protein from fruit of Lycium Chinense Mill. J. Appl. Glycosci. 47, 155–161 (2000).

    CAS  Article  Google Scholar 

  • 12.

    Seifert, G. & J Roberts, K. The biology of arabinogalactan proteins. Annu. Rev. Plant Biol. 58, 137–161 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Ellis, M., Egelund, J., Schultz, C., Bacic, J. & Arabinogalactan, A. Proteins: key regulators at the cell surface? Plant Physiol. 153, 403–419 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Ma, Y., Zeng, W., Bacic, A. & Johnson, K. AGPs through time and space. Annu. Plant Rev. 1, 1–38 (2018).

    CAS  Google Scholar 

  • 15.

    Mareri, L., Romi, M. & Cai, G. Arabinogalactan proteins: actors or spectators during abiotic and biotic stress in plants? Plant Biosyst. 153, 173–185 (2018).

    Article  Google Scholar 

  • 16.

    Su, S. & Higashlyama, T. Arabinogalactan proteins and their sugar chains: functions in plant reproduction, research methods, and biosynthesis. Plant Reprod. 31, 67–75 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Leszczuk, A., Chylińska, M. & Zdunek, A. Enzymes and vitamin C as factors influencing the presence of arabinogalactan proteins (AGPs) in Solanum lycopersicum fruit. Plant Physiol. Biochem. 139, 681–690 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Perrakis, A. et al. Suppression of a prolyl 4 hydroxylase results in delayed abscission of overripe tomato fruits. Front. Plant Sci. 10, 348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Showalter, A. M. Arabinogalactan-proteins: structure, expression and function. CMLS 58, 1399–1417 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Lamport, D. T. A., Várnai, P. & Seal, C. E. Back to the future with the AGP-Ca2+ flux capacitor. Ann. Bot. 114, 1069–1085 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Liu, Z., Persson, S. & Sánchez-Rodríguez, C. At the border: the plasma membrane-cell wall continuum. J. Exp. Bot. 66, 1553–1563 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Showalter, A. M. & Basu, D. Extensin and arabinogalactan-protein biosynthesis: glycosyltransferases, research challenges, and biosensors. Front. Plant Sci. 7, 814 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Lamport, D. T. A., Tan, L., Held, M. & Kieliszewski, M. J. Pollen tube growth and guidance: Occam’s razor sharpened on a molecular arabinogalactan glycoprotein Rosetta Stone. N. Phytol. 217, 491–500 (2018).

    CAS  Article  Google Scholar 

  • 24.

    Fragkostefanakis, S., Dandachi, F. & Kalaitzis, P. Expression of arabinogalactan proteins during tomato fruit ripening and in response to mechanical wounding, hypoxia and anoxia. Plant Physiol. Biochem. 52, 112–118 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 25.

    Lamport, D. T. A. & Várnai, P. Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. N. Phytol. 197, 58–64 (2013).

    CAS  Article  Google Scholar 

  • 26.

    Lamport, D. T. A., Tan, L., Held, M. & Kieliszewski, M. J. The role of the primary cell wall in plant morphogenesis. Int. J. Mol. Sci. 19, 2674 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  • 27.

    Baldwin, T. C., McCann, M. & Roberts, K. A novel hydroxyproline-deficient arabinogalactan protein secreted by suspension-cultured cells of Daucus carota. Plant Physiol. 103, 115–123 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Cheung, A. Y., Wang, H. & Wu, H. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82, 383–393 (1995).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Zhou, L. H., Weizbauer, R. A., Singamaneni, S., Xu, F., Genin, G. M. & Pickard, B. G. Structures formed by a cell membrane-associated arabinogalactan-protein on graphite or mica alone with Yariv phenylglycosides. Ann. Bot. 114, 1385–1397 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Renard, D., Garnier, C., Lapp, A., Schmitt, C. & Sanchez, C. Structure of arabinogalactan-protein from Acacia gum: from porus ellipsoids to supramolecular architectures. Carbohydr. Polym. 90, 322–332 (2012).

    CAS  Article  Google Scholar 

  • 31.

    Brillouet, J. M., Williams, P., Will, F., Müller, G. & Pellerin, P. Structural characterization of an apple fruits arabinogalactan-protein which aggregates following enzymic dearabinosylation. Carbohydr. Polym. 29, 271–275 (1996).

    CAS  Article  Google Scholar 

  • 32.

    Huang, Y. et al. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy. Proc. Natl Acad. Sci. 113, E3193–E3202 (2016).

    CAS  Article  Google Scholar 

  • 33.

    Palacio-Lόpez, K., Tinaz, B., Holzinger, A. & Domozych, D. Z. Arabinogalactan proteins and the extracellular matrix of Charophytes: a sticky business. Front. Plant Sci. 10, 447 (2019).

    Article  Google Scholar 

  • 34.

    Lamport, D. T. A., Kieliszewski, M. J. & Showalter, A. M. Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. N. Phytol. 169, 479–492 (2006).

    CAS  Article  Google Scholar 

  • 35.

    Hijazi, M., Velasquez, S. M., Jamet, E., Estevez, J. M. & Albenne, C. An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. Front. Plant Sci. 5, 395 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Hijazi, M. et al. Arabinogalactan protein 31 (AGP31), a putative network-forming protein in Arabidopsis thaliana cell walls. Ann. Bot. 114, 1087–1097 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Pellerin, P., Vidal, S., Williams, P. & Brillouet, J.-M. Characterization of five type II arabinogalactan-proteins fractions from red wine of increasing uronic acid content. Carbohydr. Res. 277, 135–143 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Immerzeel, P., Eppinka, M. M., de Vriesb, S. C., Scholsa, H. A. & Voragen, A. G. J. Carrot arabinogalactan proteins are interlinked with pectins. Physiol. Plant. 128, 18–28 (2006).

    CAS  Article  Google Scholar 

  • 39.

    Stevens, J. H. B. & Selvendran, R. Structural features of cell-wall polysaccharides of the carrot Daucus carota. Carbohydr. Res. 128, 321–333 (1984).

    CAS  Article  Google Scholar 

  • 40.

    Ryden, P. & Selvendran, R. R. Structural features of cell-wall polysaccharides of potato (Solanum tuberosum). Carbohydr. Res. 195, 257–272 (1990).

    CAS  Article  Google Scholar 

  • 41.

    Tan, L. et al. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25, 270–287 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Forlani, S., Masiero, S. & Mizzotti, C. Fruit ripening: the role of hormones, cell wall modifications and their intersection with pathogens. J. Exp. Bot. 70, 2993–3006 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    van Hengel, A. J. & Roberts, K. AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. Plant J. 36, 256–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  • 44.

    Sun, W., Kieliszewski, M. J. & Showalter, A. M. Overexpression of tomato LeAGP-1 arabinogalactan-protein promotes lateral branching and hampers reproductive development. Plant J. 40, 870–881 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Suzuki, Y., Kitagawa, M., Knox, J. P. & Yamaguchi, I. A role for arabinogalactan proteins in gibberellin-induced α-amylase production in barley aleurone cells. Plant J. 29, 733–741 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Park, M. H., Suzuki, Y., Chono, M., Knox, J. P. & Yamaguchi, I. CsAGP1, a gibberellin-responsive gene from cucumber hypocotyls, encodes a classical arabinogalactan protein and is involved in stem elongation. Plant Physiol. 131, 1450–1459 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Peng, Q. et al. Structural characterization of an arabinogalactan protein from the fruits of Lycium ruthenicum. J. Agric. Food Chem. 60, 9424–9429 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    Moore, J. P., Fangel, J. U., Willats, W. G. T. & Vivier, M. A. Pectic-β(1,4)-galactan, extensin and arabinogalactan-protein epitopes differentiate ripening stages in wine and table grape cell walls. Ann. Bot. 114, 1279–1294 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Leszczuk, A. et al. Structural network of arabinogalactan proteins (AGPs) and pectins in apple fruit during ripening and senescence processes. Plant Sci. 275, 36–48 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Leszczuk, A., Szczuka, E., Wydrych, J. & Zdunek, A. Changes in arabinogalactan proteins (AGPs) distribution in apple (Malus x domestica) fruit during senescence. Postharvest Biol. Technol. 138, 99–106 (2018).

    CAS  Article  Google Scholar 

  • 51.

    Leszczuk, A., Chylińska, M. & Zdunek, A. Distribution of arabinogalactan proteins and pectins in the cells of apple (Malus x domestica) fruit during post-harvest storage. Ann. Bot. 123, 47–55 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 52.

    Leszczuk, A., Pieczywek, P. M., Gryta, A., Frąc, M. & Zdunek, A. Immunocytochemical studies on the distribution of arabinogalactan proteins (AGPs) as a response to fungal infection in Malus x domestica fruit. Sci. Rep. 9, 17428 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Tsumuraya, Y. et al. Properties of arabinogalactan-proteins in European pear (Pyrus communis L.) fruits. Carbohydr. Res. 485, 107816 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Kitazawa, K. et al. β-Galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins. Plant Physiol. 161, 1117–1126 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Ma, Y. et al. Bioinformatic prediction and evolution analysis of arabinogalactan proteins in the plant kingdom. Front. Plant Sci. 8, 66 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Basu, D. et al. Two hydroxyproline galactosyltransferases, GALT5 and GALT2, function in growth and development in Arabidopsis. PLOS ONE 10, e0125624 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Montgomery, J., Goldman, S., Deikman, J., Margossian, L. & Fischer, R. L. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc. Natl Acad. Sci, USA 90, 5939–5943 (1993).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    Pirrello, J. et al. Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol. 47, 1195–1205 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Ezer, D. et al. The G-box transcriptional regulatory. Plant Physiol. 175, 628–640 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Sagor, G. H. M. et al. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol. J. 14, 1116–1126 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    Sun, H., Fan, H. & Ling, H. Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics 16, 1–12 (2015).

    Article  CAS  Google Scholar 

  • 62.

    Zhu, Z. et al. Overexpression of SlPRE2, an atypical bHLH transcription factor, affects plant morphology and fruit pigment accumulation in tomato. Sci. Rep. 1, 1–11 (2017).

    Google Scholar 

  • 63.

    Xue, G. An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G / a)(C / t) CGAC motif. Biochim. Biophys. Acta 1577, 63–72 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 64.

    Velasquez, S. M. et al. O-glycosylated cell wall proteins are essential in root hair growth. Science 332, 1401–1403 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 65.

    Fragkostefanakis, S., Sedeck, K. E. M., Raad, M., Zaki, M. S. & Kalaitzis, P. Virus induced gene silencing of three putative prolyl 4-hydroxylases enhances plant growth in tomato (Solanum lycopersicum). Plant Mol. Biol. 85, 459–471 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Koyasu, S., Kobayashi, M., Goto, Y., Hiraoka, M. & Harada, H. Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer Sci. 109, 560–571 (2017).

    Article  CAS  Google Scholar 

  • 67.

    Vlad, F. et al. Arabidopsis prolyl 4-hydroxylases are differentially expressed in response to hypoxia, anoxia and mechanical wounding. Physiol. Plant. 130, 471–483 (2007).

    CAS  Article  Google Scholar 

  • 68.

    Brummell, D. A., Dal Cin, V., Crisisto, C. H. & Labavitch, J. M. Cell wall metabolism during maturation, ripening and senescence of peach fruit. J. Exp. Bot. 55, 2029–2039 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 69.

    Szymańska-Chargot, M. et al. Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence. Planta 243, 935–945 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Source