
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. https://doi.org/10.1056/NEJMoa043330 (2005).
Teo, M. et al. A survival analysis of GBM patients in the West of Scotland pre- and post-introduction of the Stupp regime. Br. J. Neurosurg. 28, 351–355. https://doi.org/10.3109/02688697.2013.847170 (2014).
Ortega, A. et al. Multiple resections and survival of recurrent glioblastoma patients in the temozolomide era. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 24, 105–111. https://doi.org/10.1016/j.jocn.2015.05.047 (2016).
Spyratou, E., Makropoulou, M., Efstathopoulos, E. P., Georgakilas, A. G. & Sihver, L. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers (Basel) 9, 173. https://doi.org/10.3390/cancers9120173 (2017).
Haume, K. et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 7, 8. https://doi.org/10.1186/s12645-016-0021-x (2016).
Yao, X., Huang, C., Chen, X., Yi, Z. & Sanche, L. Chemical radiosensitivity of DNA induced by gold nanoparticles. J. Biomed. Nanotechnol. 11, 478–485. https://doi.org/10.1166/jbn.2015.1922 (2015).
Shilo, M. et al. The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model. J. Nanobiotechnol. 13, 19 (2015).
van Rooy, I. et al. In vivo methods to study uptake of nanoparticles into the brain. Pharm. Res. 28, 456–471. https://doi.org/10.1007/s11095-010-0291-7 (2011).
Inagaki, K. & Haraguchi, H. Determination of rare earth elements in human blood serum by inductively coupled plasma mass spectrometry after chelating resin preconcentration. Analyst 125, 191–196 (2000).
Lachine, E. E., Noujaim, A. A., Ediss, C. & Wiebe, L. I. Toxicity, tissue distribution and excretion of 46ScCl3 and 46Sc-EDTA in mice. Int. J. Appl. Radiat. Isot. 27, 373–377 (1976).
Lu, V. M., McDonald, K. L. & Townley, H. E. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma. Nanomedicine (Lond) 12, 2389–2401. https://doi.org/10.2217/nnm-2017-0193 (2017).
Bulin, A.-L. et al. Radiation dose-enhancement is a potent radiotherapeutic effect of rare-earth composite nanoscintillators in preclinical models of glioblastoma. Adv. Sci. 200, 1675. https://doi.org/10.1002/advs.202001675 (2020).
Zhuang, G. et al. Concentration of rare earth elements As, and Th in human brain and brain tumors, determined by neutron activation analysis. Biol. Trace Elem. Res. 53, 45–49 (1996).
Moncelet, D. et al. Cellular density effect on RGD ligand internalization in glioblastoma for MRI application. PLoS ONE 8, e82777. https://doi.org/10.1371/journal.pone.0082777 (2013).
Singh, S., Kumar, A., Karakoti, A., Seal, S. & Self, W. T. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol. BioSyst. 6, 1813–1820. https://doi.org/10.1039/c0mb00014k (2010).
Vassie, J. A., Whitelock, J. M. & Lord, M. S. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells. Acta Biomater. 50, 127–141. https://doi.org/10.1016/j.actbio.2016.12.010 (2017).
Lu, V. M. et al. Cytotoxicity, dose-enhancement and radiosensitization of glioblastoma cells with rare earth nanoparticles. Artif. Cells Nanomed. Biotechnol. 47, 132–143. https://doi.org/10.1080/21691401.2018.1544564 (2019).
Wang, F., Zhu, Y., Fang, S., Li, S. & Liu, S. Effect of lanthanum chloride on tumor growth and apoptosis in human ovarian cancer cells and xenograft animal models. Exp. Therap. Med. 16, 1143–1148. https://doi.org/10.3892/etm.2018.6299 (2018).
Benedetto, A. et al. Effects of the rare elements lanthanum and cerium on the growth of colorectal and hepatic cancer cell lines. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA 46, 9–18. https://doi.org/10.1016/j.tiv.2017.09.024 (2018).
Smaili, S. S. et al. The role of calcium stores in apoptosis and autophagy. Curr. Mol. Med. 13, 252–265 (2013).
Adachi, G., Imanaka, N. & Kang, Z. C. Binary Rare Earth Oxides (Springer, Cham, 2006).
Miranda-Goncalves, V., Reis, R. M. & Baltazar, F. Lactate transporters and pH regulation: potential therapeutic targets in glioblastomas. Curr. Cancer Drug Targets 16, 388–399. https://doi.org/10.2174/1568009616666151222150543 (2016).
Simon, H. U., Haj-Yehia, A. & Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis Int. J. Program. Cell Death 5, 415–418. https://doi.org/10.1023/A:1009616228304 (2000).
Brabu, B. et al. Biocompatibility studies on lanthanum oxide nanoparticles. Toxicol. Res. 4, 1037–1044. https://doi.org/10.1039/C4TX00198B (2015).
Zhang, L. et al. Activation of Nrf2/ARE signaling pathway attenuates lanthanum chloride induced injuries in primary rat astrocytes. Metallomics Integr. Biomet. Sci. 9, 1120–1131. https://doi.org/10.1039/c7mt00182g (2017).
Hong, J. et al. Molecular mechanism of oxidative damage of lung in mice following exposure to lanthanum chloride. Environ. Toxicol. 30, 357–365. https://doi.org/10.1002/tox.21913 (2015).
Su, X., Zheng, X. & Ni, J. Lanthanum citrate induces anoikis of Hela cells. Cancer Lett. 285, 200–209. https://doi.org/10.1016/j.canlet.2009.05.018 (2009).
Shen, L. et al. Proteomic analysis of lanthanum citrate-induced apoptosis in human cervical carcinoma SiHa cells. Biomet. Int. J. Role Met. Ions Biol. Biochem. Med. 23, 1179–1189. https://doi.org/10.1007/s10534-010-9368-3 (2010).
Mkandawire, M. M. et al. Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles. Nanoscale 7, 10634–10640. https://doi.org/10.1039/c5nr01483b (2015).
Tsai, Y. F. et al. Gadolinium chloride elicits apoptosis in human osteosarcoma U-2 OS cells through extrinsic signaling, intrinsic pathway and endoplasmic reticulum stress. Oncol. Rep. 36, 3421–3426. https://doi.org/10.3892/or.2016.5174 (2016).
Lee, S. Y. et al. The rare-earth yttrium complex [YR(mtbmp)(thf)] triggers apoptosis via the extrinsic pathway and overcomes multiple drug resistance in leukemic cells. Med. Oncol. (Northwood, London, Engl.) 29, 235–242. https://doi.org/10.1007/s12032-010-9787-6 (2012).
Paiva, A. V. et al. Effects of lanthanum on human lymphocytes viability and DNA strand break. Bull. Environ. Contam. Toxicol. 82, 423–427. https://doi.org/10.1007/s00128-008-9596-1 (2009).
González-Polo, R.-A. et al. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J. Cell Sci. 118, 3091 (2005).
Kretowski, R. et al. The effects of silica nanoparticles on apoptosis and autophagy of glioblastoma cell lines. Nanomaterials (Basel, Switzerland) 7, 230. https://doi.org/10.3390/nano7080230 (2017).
Zhang, X. et al. Radiosensitivity enhancement of Fe3O4@Ag nanoparticles on human glioblastoma cells. Artif. Cells Nanomed. Biotechnol. 46, 1–10. https://doi.org/10.1080/21691401.2018.1439843 (2018).
Li, R. et al. Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1β producing inflammasome. ACS Nano 8, 10280–10292. https://doi.org/10.1021/nn505002w (2014).
Zou, X. et al. X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine 9, 2339–2351. https://doi.org/10.2217/nnm.13.198 (2014).
Kobayashi, K., Usami, N., Porcel, E., Lacombe, S. & Le Sech, C. Enhancement of radiation effect by heavy elements. Mutat. Res. 704, 123–131. https://doi.org/10.1016/j.mrrev.2010.01.002 (2010).
Hubbell, J. H. & Seltzer, S. M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z= 1 to 92 and 48 Additional Substances of Dosimetric Interest (National Inst. of Standards and Technology-PL, Gaithersburg, 1995).
Mesbahi, A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep. Pract. Oncol. Radiother. 15, 176–180. https://doi.org/10.1016/j.rpor.2010.09.001 (2010).
Tini, P. et al. Is a reduction of radiation dose feasible in patients affected by glioblastoma undergoing radio-chemotherapy according to MGMT promoter methylation status without jeopardizing survival?. Clin. Neurol. Neurosurg. 184, 105445. https://doi.org/10.1016/j.clineuro.2019.105445 (2019).
Degterev, A., Boyce, M. & Yuan, J. A decade of caspases. Oncogene 22, 8543–8567. https://doi.org/10.1038/sj.onc.1207107 (2003).
Hanif, F., Perveen, K., Malhi, S. M., Jawed, H. & Simjee, S. U. Verapamil potentiates anti-glioblastoma efficacy of temozolomide by modulating apoptotic signaling. Toxicol. In Vitro Int. J. Publ. Assoc. BIBRA 52, 306–313. https://doi.org/10.1016/j.tiv.2018.07.001 (2018).
Hanif, F. et al. N-(2-hydroxyphenyl)acetamide (NA-2) and Temozolomide synergistically induce apoptosis in human glioblastoma cell line U87. Cancer Cell Int. 14, 133. https://doi.org/10.1186/s12935-014-0133-5 (2014).
Bae, S. H. et al. Toxicity profile of temozolomide in the treatment of 300 malignant glioma patients in Korea. J. Korean Med. Sci. 29, 980–984. https://doi.org/10.3346/jkms.2014.29.7.980 (2014).
Xu, A. et al. A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants. Int. J. Nanomed. 7, 3547–3554. https://doi.org/10.2147/ijn.s32188 (2012).
Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 103, 4930–4934 (2006).
Arvizo, R. R. et al. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 10, 2543–2548. https://doi.org/10.1021/nl101140t (2010).
Lim, C. H. Toxicity of two different sized lanthanum oxides in cultured cells and Sprague-Dawley rats. Toxicol. Res. 31, 181–189. https://doi.org/10.5487/tr.2015.31.2.181 (2015).
Zheng, M., Wang, S., Liu, Z., Xie, L. & Deng, Y. Development of temozolomide coated nano zinc oxide for reversing the resistance of malignant glioma stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 83, 44–50. https://doi.org/10.1016/j.msec.2017.07.015 (2018).
Lei, C., Davoodi, P., Zhan, W., Kah-Hoe Chow, P. & Wang, C. H. Development of nanoparticles for drug delivery to brain tumor: the effect of surface materials on penetration into brain tissue. J. Pharm. Sci. https://doi.org/10.1016/j.xphs.2018.12.002 (2018).
Whittaker, S. et al. Combination of palbociclib and radiotherapy for glioblastoma. Cell Death Discov. 3, 17033. https://doi.org/10.1038/cddiscovery.2017.33 (2017).
Ha, W. et al. Ibudilast sensitizes glioblastoma to temozolomide by targeting macrophage migration inhibitory factor (MIF). Sci. Rep. 9, 2905. https://doi.org/10.1038/s41598-019-39427-4 (2019).
Gersey, Z. C. et al. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer 17, 99. https://doi.org/10.1186/s12885-017-3058-2 (2017).
Chou, T. C. & Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984).
Guzmán, C., Bagga, M., Kaur, A., Westermarck, J. & Abankwa, D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS ONE 9, e92444 (2014).
Plummer, E. M. & Manchester, M. Endocytic uptake pathways utilized by CPMV nanoparticles. Mol. Pharm. 10, 26–32. https://doi.org/10.1021/mp300238w (2013).
Tang, H. et al. Effect of inhibitors of endocytosis and NF-kB signal pathway on folate-conjugated nanoparticle endocytosis by rat Kupffer cells. Int. J. Nanomed. 12, 6937–6947. https://doi.org/10.2147/ijn.S141407 (2017).
Huerta-Garcia, E. et al. Internalization of titanium dioxide nanoparticles by glial cells is given at short times and is mainly mediated by actin reorganization-dependent endocytosis. Neurotoxicology 51, 27–37. https://doi.org/10.1016/j.neuro.2015.08.013 (2015).
Saha, K. et al. Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small 9, 300–305. https://doi.org/10.1002/smll.201201129 (2013).
Das, S. et al. Tissue deposition and toxicological effects of commercially significant rare earth oxide nanomaterials: Material and physical properties. Environ. Toxicol. 32, 904–917. https://doi.org/10.1002/tox.22290 (2016).