• 1.

    Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. https://doi.org/10.1056/NEJMoa043330 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 2.

    Teo, M. et al. A survival analysis of GBM patients in the West of Scotland pre- and post-introduction of the Stupp regime. Br. J. Neurosurg. 28, 351–355. https://doi.org/10.3109/02688697.2013.847170 (2014).

    Article  PubMed  Google Scholar 

  • 3.

    Ortega, A. et al. Multiple resections and survival of recurrent glioblastoma patients in the temozolomide era. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 24, 105–111. https://doi.org/10.1016/j.jocn.2015.05.047 (2016).

    Article  Google Scholar 

  • 4.

    Spyratou, E., Makropoulou, M., Efstathopoulos, E. P., Georgakilas, A. G. & Sihver, L. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers (Basel) 9, 173. https://doi.org/10.3390/cancers9120173 (2017).

    CAS  Article  Google Scholar 

  • 5.

    Haume, K. et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 7, 8. https://doi.org/10.1186/s12645-016-0021-x (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Yao, X., Huang, C., Chen, X., Yi, Z. & Sanche, L. Chemical radiosensitivity of DNA induced by gold nanoparticles. J. Biomed. Nanotechnol. 11, 478–485. https://doi.org/10.1166/jbn.2015.1922 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Shilo, M. et al. The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model. J. Nanobiotechnol. 13, 19 (2015).

    Article  Google Scholar 

  • 8.

    van Rooy, I. et al. In vivo methods to study uptake of nanoparticles into the brain. Pharm. Res. 28, 456–471. https://doi.org/10.1007/s11095-010-0291-7 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Inagaki, K. & Haraguchi, H. Determination of rare earth elements in human blood serum by inductively coupled plasma mass spectrometry after chelating resin preconcentration. Analyst 125, 191–196 (2000).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Lachine, E. E., Noujaim, A. A., Ediss, C. & Wiebe, L. I. Toxicity, tissue distribution and excretion of 46ScCl3 and 46Sc-EDTA in mice. Int. J. Appl. Radiat. Isot. 27, 373–377 (1976).

    CAS  Article  Google Scholar 

  • 11.

    Lu, V. M., McDonald, K. L. & Townley, H. E. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma. Nanomedicine (Lond) 12, 2389–2401. https://doi.org/10.2217/nnm-2017-0193 (2017).

    CAS  Article  Google Scholar 

  • 12.

    Bulin, A.-L. et al. Radiation dose-enhancement is a potent radiotherapeutic effect of rare-earth composite nanoscintillators in preclinical models of glioblastoma. Adv. Sci. 200, 1675. https://doi.org/10.1002/advs.202001675 (2020).

    Article  Google Scholar 

  • 13.

    Zhuang, G. et al. Concentration of rare earth elements As, and Th in human brain and brain tumors, determined by neutron activation analysis. Biol. Trace Elem. Res. 53, 45–49 (1996).

    CAS  Article  Google Scholar 

  • 14.

    Moncelet, D. et al. Cellular density effect on RGD ligand internalization in glioblastoma for MRI application. PLoS ONE 8, e82777. https://doi.org/10.1371/journal.pone.0082777 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Singh, S., Kumar, A., Karakoti, A., Seal, S. & Self, W. T. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol. BioSyst. 6, 1813–1820. https://doi.org/10.1039/c0mb00014k (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Vassie, J. A., Whitelock, J. M. & Lord, M. S. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells. Acta Biomater. 50, 127–141. https://doi.org/10.1016/j.actbio.2016.12.010 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Lu, V. M. et al. Cytotoxicity, dose-enhancement and radiosensitization of glioblastoma cells with rare earth nanoparticles. Artif. Cells Nanomed. Biotechnol. 47, 132–143. https://doi.org/10.1080/21691401.2018.1544564 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Wang, F., Zhu, Y., Fang, S., Li, S. & Liu, S. Effect of lanthanum chloride on tumor growth and apoptosis in human ovarian cancer cells and xenograft animal models. Exp. Therap. Med. 16, 1143–1148. https://doi.org/10.3892/etm.2018.6299 (2018).

    CAS  Article  Google Scholar 

  • 19.

    Benedetto, A. et al. Effects of the rare elements lanthanum and cerium on the growth of colorectal and hepatic cancer cell lines. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA 46, 9–18. https://doi.org/10.1016/j.tiv.2017.09.024 (2018).

    CAS  Article  Google Scholar 

  • 20.

    Smaili, S. S. et al. The role of calcium stores in apoptosis and autophagy. Curr. Mol. Med. 13, 252–265 (2013).

    CAS  Article  Google Scholar 

  • 21.

    Adachi, G., Imanaka, N. & Kang, Z. C. Binary Rare Earth Oxides (Springer, Cham, 2006).

    Google Scholar 

  • 22.

    Miranda-Goncalves, V., Reis, R. M. & Baltazar, F. Lactate transporters and pH regulation: potential therapeutic targets in glioblastomas. Curr. Cancer Drug Targets 16, 388–399. https://doi.org/10.2174/1568009616666151222150543 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Simon, H. U., Haj-Yehia, A. & Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis Int. J. Program. Cell Death 5, 415–418. https://doi.org/10.1023/A:1009616228304 (2000).

    CAS  Article  Google Scholar 

  • 24.

    Brabu, B. et al. Biocompatibility studies on lanthanum oxide nanoparticles. Toxicol. Res. 4, 1037–1044. https://doi.org/10.1039/C4TX00198B (2015).

    CAS  Article  Google Scholar 

  • 25.

    Zhang, L. et al. Activation of Nrf2/ARE signaling pathway attenuates lanthanum chloride induced injuries in primary rat astrocytes. Metallomics Integr. Biomet. Sci. 9, 1120–1131. https://doi.org/10.1039/c7mt00182g (2017).

    CAS  Article  Google Scholar 

  • 26.

    Hong, J. et al. Molecular mechanism of oxidative damage of lung in mice following exposure to lanthanum chloride. Environ. Toxicol. 30, 357–365. https://doi.org/10.1002/tox.21913 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 27.

    Su, X., Zheng, X. & Ni, J. Lanthanum citrate induces anoikis of Hela cells. Cancer Lett. 285, 200–209. https://doi.org/10.1016/j.canlet.2009.05.018 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 28.

    Shen, L. et al. Proteomic analysis of lanthanum citrate-induced apoptosis in human cervical carcinoma SiHa cells. Biomet. Int. J. Role Met. Ions Biol. Biochem. Med. 23, 1179–1189. https://doi.org/10.1007/s10534-010-9368-3 (2010).

    CAS  Article  Google Scholar 

  • 29.

    Mkandawire, M. M. et al. Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles. Nanoscale 7, 10634–10640. https://doi.org/10.1039/c5nr01483b (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 30.

    Tsai, Y. F. et al. Gadolinium chloride elicits apoptosis in human osteosarcoma U-2 OS cells through extrinsic signaling, intrinsic pathway and endoplasmic reticulum stress. Oncol. Rep. 36, 3421–3426. https://doi.org/10.3892/or.2016.5174 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Lee, S. Y. et al. The rare-earth yttrium complex [YR(mtbmp)(thf)] triggers apoptosis via the extrinsic pathway and overcomes multiple drug resistance in leukemic cells. Med. Oncol. (Northwood, London, Engl.) 29, 235–242. https://doi.org/10.1007/s12032-010-9787-6 (2012).

    CAS  Article  Google Scholar 

  • 32.

    Paiva, A. V. et al. Effects of lanthanum on human lymphocytes viability and DNA strand break. Bull. Environ. Contam. Toxicol. 82, 423–427. https://doi.org/10.1007/s00128-008-9596-1 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    González-Polo, R.-A. et al. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J. Cell Sci. 118, 3091 (2005).

    Article  Google Scholar 

  • 34.

    Kretowski, R. et al. The effects of silica nanoparticles on apoptosis and autophagy of glioblastoma cell lines. Nanomaterials (Basel, Switzerland) 7, 230. https://doi.org/10.3390/nano7080230 (2017).

    CAS  Article  Google Scholar 

  • 35.

    Zhang, X. et al. Radiosensitivity enhancement of Fe3O4@Ag nanoparticles on human glioblastoma cells. Artif. Cells Nanomed. Biotechnol. 46, 1–10. https://doi.org/10.1080/21691401.2018.1439843 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Li, R. et al. Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1β producing inflammasome. ACS Nano 8, 10280–10292. https://doi.org/10.1021/nn505002w (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Zou, X. et al. X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine 9, 2339–2351. https://doi.org/10.2217/nnm.13.198 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Kobayashi, K., Usami, N., Porcel, E., Lacombe, S. & Le Sech, C. Enhancement of radiation effect by heavy elements. Mutat. Res. 704, 123–131. https://doi.org/10.1016/j.mrrev.2010.01.002 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 39.

    Hubbell, J. H. & Seltzer, S. M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z= 1 to 92 and 48 Additional Substances of Dosimetric Interest (National Inst. of Standards and Technology-PL, Gaithersburg, 1995).

    Google Scholar 

  • 40.

    Mesbahi, A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep. Pract. Oncol. Radiother. 15, 176–180. https://doi.org/10.1016/j.rpor.2010.09.001 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Tini, P. et al. Is a reduction of radiation dose feasible in patients affected by glioblastoma undergoing radio-chemotherapy according to MGMT promoter methylation status without jeopardizing survival?. Clin. Neurol. Neurosurg. 184, 105445. https://doi.org/10.1016/j.clineuro.2019.105445 (2019).

    Article  PubMed  Google Scholar 

  • 42.

    Degterev, A., Boyce, M. & Yuan, J. A decade of caspases. Oncogene 22, 8543–8567. https://doi.org/10.1038/sj.onc.1207107 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Hanif, F., Perveen, K., Malhi, S. M., Jawed, H. & Simjee, S. U. Verapamil potentiates anti-glioblastoma efficacy of temozolomide by modulating apoptotic signaling. Toxicol. In Vitro Int. J. Publ. Assoc. BIBRA 52, 306–313. https://doi.org/10.1016/j.tiv.2018.07.001 (2018).

    CAS  Article  Google Scholar 

  • 44.

    Hanif, F. et al. N-(2-hydroxyphenyl)acetamide (NA-2) and Temozolomide synergistically induce apoptosis in human glioblastoma cell line U87. Cancer Cell Int. 14, 133. https://doi.org/10.1186/s12935-014-0133-5 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Bae, S. H. et al. Toxicity profile of temozolomide in the treatment of 300 malignant glioma patients in Korea. J. Korean Med. Sci. 29, 980–984. https://doi.org/10.3346/jkms.2014.29.7.980 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Xu, A. et al. A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants. Int. J. Nanomed. 7, 3547–3554. https://doi.org/10.2147/ijn.s32188 (2012).

    CAS  Article  Google Scholar 

  • 47.

    Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 103, 4930–4934 (2006).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Arvizo, R. R. et al. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 10, 2543–2548. https://doi.org/10.1021/nl101140t (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Lim, C. H. Toxicity of two different sized lanthanum oxides in cultured cells and Sprague-Dawley rats. Toxicol. Res. 31, 181–189. https://doi.org/10.5487/tr.2015.31.2.181 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Zheng, M., Wang, S., Liu, Z., Xie, L. & Deng, Y. Development of temozolomide coated nano zinc oxide for reversing the resistance of malignant glioma stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 83, 44–50. https://doi.org/10.1016/j.msec.2017.07.015 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 51.

    Lei, C., Davoodi, P., Zhan, W., Kah-Hoe Chow, P. & Wang, C. H. Development of nanoparticles for drug delivery to brain tumor: the effect of surface materials on penetration into brain tissue. J. Pharm. Sci. https://doi.org/10.1016/j.xphs.2018.12.002 (2018).

    Article  PubMed  Google Scholar 

  • 52.

    Whittaker, S. et al. Combination of palbociclib and radiotherapy for glioblastoma. Cell Death Discov. 3, 17033. https://doi.org/10.1038/cddiscovery.2017.33 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Ha, W. et al. Ibudilast sensitizes glioblastoma to temozolomide by targeting macrophage migration inhibitory factor (MIF). Sci. Rep. 9, 2905. https://doi.org/10.1038/s41598-019-39427-4 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Gersey, Z. C. et al. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer 17, 99. https://doi.org/10.1186/s12885-017-3058-2 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Chou, T. C. & Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984).

    CAS  Article  Google Scholar 

  • 56.

    Guzmán, C., Bagga, M., Kaur, A., Westermarck, J. & Abankwa, D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS ONE 9, e92444 (2014).

    ADS  Article  Google Scholar 

  • 57.

    Plummer, E. M. & Manchester, M. Endocytic uptake pathways utilized by CPMV nanoparticles. Mol. Pharm. 10, 26–32. https://doi.org/10.1021/mp300238w (2013).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    Tang, H. et al. Effect of inhibitors of endocytosis and NF-kB signal pathway on folate-conjugated nanoparticle endocytosis by rat Kupffer cells. Int. J. Nanomed. 12, 6937–6947. https://doi.org/10.2147/ijn.S141407 (2017).

    CAS  Article  Google Scholar 

  • 59.

    Huerta-Garcia, E. et al. Internalization of titanium dioxide nanoparticles by glial cells is given at short times and is mainly mediated by actin reorganization-dependent endocytosis. Neurotoxicology 51, 27–37. https://doi.org/10.1016/j.neuro.2015.08.013 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 60.

    Saha, K. et al. Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small 9, 300–305. https://doi.org/10.1002/smll.201201129 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Das, S. et al. Tissue deposition and toxicological effects of commercially significant rare earth oxide nanomaterials: Material and physical properties. Environ. Toxicol. 32, 904–917. https://doi.org/10.1002/tox.22290 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • Source