• 1.

    Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G. & Stevenson, F. K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854 (1999).

    CAS  Article  Google Scholar 

  • 2.

    Chen, L., Widhopf, G., Huynh, L., Rassenti, L., Rai, K. R., Weiss, A. et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 100, 4609–4614 (2002).

    CAS  Article  Google Scholar 

  • 3.

    Richardson, S. J., Matthews, C., Catherwood, M. A., Alexander, H. D., Carey, B. S., Farrugia, J. et al. ZAP-70 expression is associated with enhanced ability to respond to migratory and survival signals in B-cell chronic lymphocytic leukemia (B-CLL). Blood 107, 3584–3592 (2006).

    CAS  Article  Google Scholar 

  • 4.

    Döhner, H., Stilgenbauer, S., Benner, A., Leupolt, E., Kröber, A., Bullinger, L. et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 343, 1910–1916 (2000).

    Article  Google Scholar 

  • 5.

    Landau, D. A., Carter, S. L., Stojanov, P., Mckenna, A., Stevenson, K., Lawrence, M. S. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).

    CAS  Article  Google Scholar 

  • 6.

    Burger, J. A., Landau, D. A., Taylor-Weiner, A., Bozic, I., Zhang, H., Sarosiek, K. et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat. Commun. 7, 11589 (2016).

    CAS  Article  Google Scholar 

  • 7.

    Landau, D. A., Clement, K., Ziller, M. J., Boyle, P., Fan, J., Gu, H. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26, 813–825 (2014).

    CAS  Article  Google Scholar 

  • 8.

    Oakes, C. C., Seifert, M., Assenov, Y., Gu, L., Przekopowitz, M., Ruppert, A. S. et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat. Genet. 48, 253–264 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Kanduri, M., Cahill, N., Göransson, H., Enström, C., Ryan, F., Isaksson, A. et al. Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. Blood 115, 296–305 (2010).

    CAS  Article  Google Scholar 

  • 10.

    Kulis, M., Heath, S., Bibikova, M., Queirós, A. C., Navarro, A., Clot, G. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44, 1236–1242 (2012).

    CAS  Article  Google Scholar 

  • 11.

    Queirós, A. C., Villamor, N., Clot, G., Martinez-Trillos, A., Kulis, M., Navarro, A. et al. A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia 29, 598–605 (2015).

    Article  Google Scholar 

  • 12.

    Cahill, N., Bergh, A. C., Kanduri, M., Göransson-Kultima, H., Mansouri, L., Isaksson, A. et al. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia 27, 150–158 (2013).

    CAS  Article  Google Scholar 

  • 13.

    Oakes, C. C., Claus, R., Gu, L., Assenov, Y., Hüllein, J., Zucknick, M. et al. Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia. Cancer Discov. 4, 348–361 (2014).

    CAS  Article  Google Scholar 

  • 14.

    Tsagiopoulou, M., Papakonstantinou, N., Moysiadis, T., Mansouri, L., Ljungström, V., Duran-Ferrer, M. et al. DNA methylation profiles in chronic lymphocytic leukemia patients treated with chemoimmunotherapy. Clin. Epigenet. 11, 177 (2019).

    CAS  Article  Google Scholar 

  • 15.

    Fabris, S., Bollati, V., Agnelli, L., Morabito, F., Motta, V., Cutrona, G. et al. Biological and clinical relevance of quantitative global methylation of repetitive DNA sequences in chronic lymphocytic leukemia. Epigenetics 6, 188–194 (2011).

    CAS  Article  Google Scholar 

  • 16.

    Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  Google Scholar 

  • 17.

    Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinforma. 13, 86 (2012).

    Article  Google Scholar 

  • 18.

    Peters, T. J., Buckley, M. J., Statham, A. L., Pidsley, R., Samaras, K., V Lord, R. et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 8, 6 (2015).

    Article  Google Scholar 

  • 19.

    Gautrey, H. E., Van Otterdijk, S. D., Cordell, H. J., Newcastle, S. C. T., Mathers, J. C. & Strathdee, G. DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells. FASEB J. 28, 3261–3272 (2014).

    CAS  Article  Google Scholar 

  • 20.

    Busiello, T., Ciano, M., Romano, S., Sodaro, G., Garofalo, O., Bruzzese, D. et al. Role of ZNF224 in cell growth and chemoresistance of chronic lymphocitic leukemia. Hum. Mol. Genet. 26, 344–353 (2017).

    CAS  PubMed  Google Scholar 

  • 21.

    Stacchini, A., Aragno, M., Vallario, A., Alfarano, A., Circosta, P., Gottardi, D. et al. MEC1 and MEC2: two new cell lines derived from B-chronic lymphocytic leukaemia in prolymphocytoid transformation. Leuk. Res. 23, 127–136 (1999).

    CAS  Article  Google Scholar 

  • 22.

    Spainhour, J. C., Lim, H. S., Yi, S. V. & Qiu, P. Correlation patterns between DNA methylation and gene expression in The Cancer Genome Atlas. Cancer Inf. 18, 1176935119828776 (2019).

    Google Scholar 

  • 23.

    Strathdee, G., Holyoake, T. L., Sim, A., Parker, A., Oscier, D. G., Melo, J. V. et al. Inactivation of HOXA genes by hypermethylation in myeloid and lymphoid malignancy is frequent and associated with poor prognosis. Clin. Cancer Res 13, 5048–5055 (2007).

    CAS  Article  Google Scholar 

  • 24.

    Elias, M. H., Baba, A. A., Husin, A., Sulong, S., Hassan, R. & Sim, G. A. et al. HOXA4 gene promoter hypermethylation as an epigenetic mechanism mediating resistance to imatinib mesylate in chronic myeloid leukemia patients. Biomed. Res. Int. 2013, 129715 (2013)..

  • 25.

    Smith, E. N., Ghia, E. M., Deboever, C. M., Rassenti, L. Z., Jepsen, K., Yoon, K. A. et al. Genetic and epigenetic profiling of CLL disease progression reveals limited somatic evolution and suggests a relationship to memory-cell development. Blood Cancer J. 5, e303 (2015).

    CAS  Article  Google Scholar 

  • 26.

    Irving, L., Mainou-Fowler, T., Parker, A., Ibbotson, R. E., Oscier, D. G. & Strathdee, G. Methylation markers identify high risk patients in IGHV mutated chronic lymphocytic leukemia. Epigenetics 6, 300–306 (2011).

    CAS  Article  Google Scholar 

  • 27.

    Cheng, S., Qian, F., Huang, Q., Wei, L., Fu, Y. & Du, Y. HOXA4, down-regulated in lung cancer, inhibits the growth, motility and invasion of lung cancer cells. Cell Death Dis. 9, 465 (2018).

    Article  Google Scholar 

  • 28.

    Lu, D., Zhao, Y., Tawatao, R., Cottam, H. B., Sen, M., Leoni, L. M. et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 101, 3118–3123 (2004).

    CAS  Article  Google Scholar 

  • 29.

    Gutierrez, A., Tschumper, R. C., Wu, X., Shanafelt, T. D., Eckel-Passow, J., Huddleston, P. M. et al. LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood 116, 2975–2983 (2010).

    CAS  Article  Google Scholar 

  • 30.

    Moskalev, E. A., Luckert, K., Vorobjev, I. A., Mastitsky, S. E., Gladkikh, A. A., Stephan, A. et al. Concurrent epigenetic silencing of wnt/β-catenin pathway inhibitor genes in B cell chronic lymphocytic leukaemia. BMC Cancer 12, 213 (2012).

    CAS  Article  Google Scholar 

  • 31.

    Pei, L., Choi, J. H., Liu, J., Lee, E. J., Mccarthy, B., Wilson, J. M. et al. Genome-wide DNA methylation analysis reveals novel epigenetic changes in chronic lymphocytic leukemia. Epigenetics 7, 567–578 (2012).

    CAS  Article  Google Scholar 

  • 32.

    Damm, F., Mylonas, E., Cosson, A., Yoshida, K., Della Valle, V., Mouly, E. et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 4, 1088–1101 (2014).

    CAS  Article  Google Scholar 

  • 33.

    Winkelmann, N., Rose-Zerilli, M., Forster, J., Parry, M., Parker, A., Gardiner, A. et al. Low frequency mutations independently predict poor treatment-free survival in early stage chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis. Haematologica 100, e237–e239 (2015).

    Article  Google Scholar 

  • 34.

    Rose-Zerilli, M. J., Gibson, J., Wang, J., Tapper, W., Davis, Z., Parker, H. et al. Longitudinal copy number, whole exome and targeted deep sequencing of ‘good risk’ IGHV-mutated CLL patients with progressive disease. Leukemia 30, 1301–1310 (2016).

    CAS  Article  Google Scholar 

  • 35.

    Neilson, J. R., Auer, R., White, D., Bienz, N., Waters, J. J., Whittaker, J. A. et al. Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia 11, 1929–1932 (1997).

    CAS  Article  Google Scholar 

  • Source