• 1.

    Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes. Dev. 25, 1010–1022 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Farlik, M. et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 10, 1386–1397 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Li, E. & Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6, a019133 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Ji, D., Lin, K., Song, J. & Wang, Y. Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation. Mol. Biosyst. 10, 1749–1752 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Hashimoto, H. et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40, 4841–4849 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Valinluck, V. & Sowers, L. C. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 67, 946–950 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Schön, A. et al. Analysis of an active deformylation mechanism of 5-formyl-deoxycytidine (fdC) in stem cells. Angew. Chem. Int. Ed. 59, 5591–5594 (2020).

    Article  CAS  Google Scholar 

  • 17.

    Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Ficz, G. et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13, 351–359 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Lee, H. J., Hore, T. A. & Reik, W. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14, 710–719 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Ginno, P. A. et al. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat. Commun. 11, 2680 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Rulands, S. et al. Genome-scale oscillations in DNA methylation during exit from pluripotency. Cell Syst. 7, 63–76.e12 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Song, Y. et al. Dynamic enhancer DNA methylation as basis for transcriptional and cellular heterogeneity of ESCs. Mol. Cell 75, 905–920.e6 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Charlton, J. et al. TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers. Nat. Genet. 8, 819–827 (2020).

    Article  CAS  Google Scholar 

  • 24.

    Spada, F. et al. Active turnover of genomic methylcytosine in pluripotent cells. Nat. Chem. Biol. https://doi.org/10.1038/s41589-020-0621-y (2020).

    Article  PubMed  Google Scholar 

  • 25.

    Chen, Z. & Zhang, Y. Role of mammalian DNA methyltransferases in development. Annu. Rev. Biochem. 89, 135–158 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cell 11, 805–814 (2006).

    CAS  Article  Google Scholar 

  • 27.

    Dawlaty, M. M. et al. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev. Cell 29, 102–111 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Dai, H. Q. et al. TET-mediated DNA demethylation controls gastrulation by regulating Lefty–Nodal signalling. Nature 538, 528–532 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 30.

    Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195–3205 (1996).

    CAS  PubMed  Google Scholar 

  • 31.

    Yamagata, Y. et al. Rapid turnover of DNA methylation in human cells. Epigenetics 7, 141–145 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Kalkan, T. et al. Tracking the embryonic stem cell transition from ground state pluripotency. Development 144, 1221–1234 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Morgani, S., Nichols, J. & Hadjantonakis, A. K. The many faces of pluripotency: in vitro adaptations of a continuum of in vivo states. BMC Dev. Biol. 17, 7 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 34.

    Smith, A. Formative pluripotency: the executive phase in a developmental continuum. Development 144, 365–373 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Stelzer, Y., Shivalila, C. S., Soldner, F., Markoulaki, S. & Jaenisch, R. Tracing dynamic changes of DNA methylation at single-cell resolution. Cell 163, 218–229 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Guo, H. et al. Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat. Protoc. 10, 645–659 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Bochtler, M., Kolano, A. & Xu, G. L. DNA demethylation pathways: additional players and regulators. Bioessays 39, 1–13 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Acebrón, J. A., Bonilla, L. L., Vicente, C. J. P., Ritort, F. & Spigler, R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).

    Article  Google Scholar 

  • 40.

    Strogatz, S. H., Abrams, D. M., McRobie, A., Eckhardt, B. & Ott, E. Crowd synchrony on the Millennium Bridge. Nature 438, 43–44 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Kangaspeska, S. et al. Transient cyclical methylation of promoter DNA. Nature 452, 112–115 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Métivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008).

    PubMed  Article  CAS  Google Scholar 

  • 43.

    Wang, K. Y., Chen, C. C. & Shen, C. K. J. Active DNA demethylation of the vertebrate genomes by DNA methyltransferases: deaminase, dehydroxymethylase or demethylase? Epigenomics 6, 353–363 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Chen, C. C., Wang, K. Y. & Shen, C. K. J. DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. J. Biol. Chem. 288, 9084–9091 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Chen, C. C., Wang, K. Y. & Shen, C. K. J. The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J. Biol. Chem. 287, 33116–33121 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Shah, S. et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363–376.e16 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Sneppen, K. & Ringrose, L. Theoretical analysis of Polycomb–Trithorax systems predicts that poised chromatin is bistable and not bivalent. Nat. Commun. 10, 2133 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Grosselin, K. et al. High-throughput single-cell ChIP–seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51, 1060–1066 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Wang, Q. et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol. Cell 76, 206–216.e7 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Carter, B. et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat. Commun. 10, 3747 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Harada, A. et al. A chromatin integration labelling method enables epigenomic profiling with lower input. Nat. Cell Biol. 21, 287–296 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 53.

    Hu, L. et al. Crystal structure of TET2–DNA complex: insight into TET-mediated 5mC oxidation. Cell 155, 1545–1555 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Williams, K. et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–349 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Xu, Y. et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42, 451–464 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Wu, H. et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–394 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Hon, G. C. et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56, 286–297 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Lu, F., Liu, Y., Jiang, L., Yamaguchi, S. & Zhang, Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes. Dev. 28, 2103–2119 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Rasmussen, K. D. & Helin, K. Role of TET enzymes in DNA methylation, development, and cancer. Genes. Dev. 30, 733–750 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Nakagawa, T. et al. CRL4VprBP E3 ligase promotes monoubiquitylation and chromatin binding of TET dioxygenases. Mol. Cell 57, 247–260 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 62.

    Zhang, Y. W. et al. Acetylation enhances TET2 function in protecting against abnormal DNA methylation during oxidative stress. Mol. Cell 65, 323–335 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Okashita, N. et al. PRDM14 promotes active DNA demethylation through the ten–eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Development 141, 269–280 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Costa, Y. et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495, 370–374 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Rebeiz, M. & Tsiantis, M. Enhancer evolution and the origins of morphological novelty. Curr. Opin. Genet. Dev. 45, 115–123 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Ramos, A. I. & Barolo, S. Low-affinity transcription factor binding sites shape morphogen responses and enhancer evolution. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130018 (2013).

    Article  CAS  Google Scholar 

  • 67.

    Farley, E. K. et al. Suboptimization of developmental enhancers. Science 350, 325–328 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Gu, T. et al. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol. 19, 88 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 69.

    Otani, J. et al. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain. EMBO Rep. 10, 1235–1241 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Ooi, S. K. T. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Rush, M. et al. Targeting of EZH2 to a defined genomic site is sufficient for recruitment of Dnmt3a but not de novo DNA methylation. Epigenetics 4, 404–414 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 72.

    Li, H. et al. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J. Biol. Chem. 281, 19489–19500 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    Hervouet, E., Peixoto, P., Delage-Mourroux, R., Boyer-Guittaut, M. & Cartron, P. F. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin. Epigenetics 10, 17 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 74.

    Brenner, C. et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24, 336–346 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 75.

    Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Szulwach, K. E. et al. 5-hmC-Mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14, 1607–1616 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Rudenko, A. et al. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 79, 1109–1122 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Hahn, M. A. et al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep. 3, 291–300 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Izzo, F. et al. DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nat. Genet. 52, 378–387 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Apostolou, E. & Hochedlinger, K. Chromatin dynamics during cellular reprogramming. Nature 502, 462–471 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 81.

    Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 82.

    Pawlak, M. & Jaenisch, R. De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state. Genes Dev. 25, 1035–1040 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 83.

    Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598–602 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 84.

    Doege, C. A. et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488, 652–655 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 85.

    Hu, X. et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 14, 512–522 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 86.

    Sardina, J. L. et al. Transcription factors drive Tet2-mediated enhancer demethylation to reprogram cell fate. Cell Stem Cell 23, 727–741.e9 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 87.

    Ostrander, E. L. et al. Divergent effects of Dnmt3a and Tet2 mutations on hematopoietic progenitor cell fitness. Stem Cell Rep. 14, 551–560 (2020).

    CAS  Article  Google Scholar 

  • 88.

    Clark, S. J. et al. ScNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 89.

    Bachman, M. et al. 5-Formylcytosine can be a stable DNA modification in mammals. Nat. Chem. Biol. 11, 555–557 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Bachman, M. et al. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat. Chem. 6, 1049–1055 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 91.

    Iurlaro, M. et al. In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine. Genome Biol. 17, 141 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 92.

    Wu, X. & Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 93.

    Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 94.

    Iurlaro, M. et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 95.

    Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 96.

    Field, A. & Adelman, K. Evaluating enhancer function and transcription. Annu. Rev. Biochem. 89, 213–234 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 97.

    Mohammed, H. et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 20, 1215–1228 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 98.

    Pujadas, E. & Feinberg, A. P. Regulated noise in the epigenetic landscape of development and disease. Cell 148, 1123–1131 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 99.

    Holtzman, L. & Gersbach, C. A. Editing the epigenome: reshaping the genomic landscape. Annu. Rev. Genomics Hum. Genet. 19, 43–71 (2018).

    CAS  PubMed  Article  Google Scholar 

  • Source