• 1.

    Ishizaki A, Tanaka K, Taga N. Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl Microbiol Biotechnol. 2001;57:6–12.

    CAS  Article  Google Scholar 

  • 2.

    Kusian B, Sültemeyer D, Bowien B. Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol. 2002;184:5018–26.

    CAS  Article  Google Scholar 

  • 3.

    Gai CS, Lu J, Brigham CJ, Bernardi AC, Sinskey AJ. Insights into bacterial CO2 metabolism revealed by the characterization of four carbonic anhydrases in Ralstonia eutropha H16. AMB Express. 2014;4:2.

    Article  Google Scholar 

  • 4.

    Taguchi S, Iwata T, Abe H, Doi Y Poly(hydroxyalkanoate)s. Polymer science: a comprehensive reference. Amsterdam: Elsevier; 2012. p. 157–82.

  • 5.

    Tsuge T. Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng. 2002;94:579–84.

    CAS  Article  Google Scholar 

  • 6.

    Tsuge T, Yano K, Imazu SI, Numata K, Kikkawa Y, Abe H, et al. Biosynthesis of polyhydroxyalkanoate (PHA) copolymer from fructose using wild-type and laboratory-evolved PHA synthases. Macromol Biosci. 2005;5:112–7.

    CAS  Article  Google Scholar 

  • 7.

    Kahar P, Tsuge T, Taguchi K, Doi Y. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stabil. 2004;83:79–86.

    CAS  Article  Google Scholar 

  • 8.

    Tanaka K, Ishizaki A, Kanamaru T, Kawano T. Production of poly(D-3-hydroxybutyrate) from CO2, H2, and O2 by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng. 1995;45:268–75.

    CAS  Article  Google Scholar 

  • 9.

    Sugimoto T, Tsuge T, Tanaka K, Ishizaki A. (1999). Control of acetic acid concentration by pH-stat continuous substrate feeding in heterotrophic culture phase of two-stage cultivation of Alcaligenes eutrophus for production of P(3HB) from CO2, H2, and O2 under non-explosive conditions. Biotechnol Bioeng 1999;62:625–31.

    CAS  Article  Google Scholar 

  • 10.

    Kärst U, Friedrich CG. (1984). Mixotrophic capabilities of Alcaligenes eutrophus. Microbiology. 1984;130:1987–94.

    Article  Google Scholar 

  • 11.

    Miyahara Y, Yamamoto M, Thorbecke R, Mizuno S, Tsuge T. Autotrophic biosynthesis of polyhydroxyalkanoate by Ralstonia eutropha from non-combustible gas mixture with low hydrogen content. Biotechnol Lett. 2020;42:1655–62.

    CAS  Article  Google Scholar 

  • 12.

    Schwartz E, Voigt B, Zühlke D, Pohlmann A, Lenz O, Albrecht D, et al. A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics. 2009;9:5132–42.

    CAS  Article  Google Scholar 

  • 13.

    Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop R, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic resistance cassettes. Gene. 1995;166:175–6.

    CAS  Article  Google Scholar 

  • 14.

    Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de Las Heras A, et al. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res. 2013;41:D666–75.

    CAS  Article  Google Scholar 

  • 15.

    Miyahara Y, Oota M, Tsuge T. NADPH supply for poly(3-hydroxybutyrate) synthesis concomitant with enzymatic oxidation of phosphite. J Biosci Bioeng. 2018;126:764–8.

    CAS  Article  Google Scholar 

  • 16.

    Fukui T, Ohsawa K, Mifune J, Orita I, Nakamura S. Evaluation of promoters for gene expression in polyhydroxyalkanoate-producing Cupriavidus necator H16. Appl Microbiol Biotechnol. 2011;89:1527–36.

    CAS  Article  Google Scholar 

  • 17.

    Khanna S, Srivastava AK. Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochem. 2005;40:2173–82.

    CAS  Article  Google Scholar 

  • 18.

    Fukui T, Mukoyama M, Orita I, Nakamura S. Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates. Appl Microbiol Biotechnol. 2014;98:7559–68.

    CAS  Article  Google Scholar 

  • 19.

    Shimizu R, Dempo Y, Nakayama Y, Nakamura S, Bamba T, Fukusaki E, et al. New insight into the role of the Calvin cycle: reutilization of CO2 emitted through sugar degradation. Sci Rep. 2015;5:11617.

    Article  Google Scholar 

  • Source