• 1.

    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    CAS  PubMed  Google Scholar 

  • 2.

    Hawkins, N. J. & Fraaije, B. A. Fitness penalties in the evolution of fungicide resistance. Annu. Rev. Phytopathol. 56, 339–360 (2018).

    CAS  PubMed  Google Scholar 

  • 3.

    Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).

    CAS  PubMed  Google Scholar 

  • 4.

    Théry, M. & Bornens, M. Cell shape and cell division. Curr. Opin. Cell Biol. 18, 648–657 (2006).

    PubMed  Google Scholar 

  • 5.

    Keren, K. et al. Mechanism of shape determination in motile cells. Nature 453, 475–480 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Momany, M. & Talbot, N. J. Septins focus cellular growth for host infection by pathogenic fungi. Front. Cell Dev. Biol. 5, 33 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Roberts, R. E. & Hallett, M. B. Neutrophil cell shape change: mechanism and signalling during cell spreading and phagocytosis. Int. J. Mol. Sci. 20, 1383 (2019).

    CAS  PubMed Central  Google Scholar 

  • 8.

    Luxenburg, C. & Zaidel-Bar, R. From cell shape to cell fate via the cytoskeleton—insights from the epidermis. Exp. Cell. Res. 378, 232–237 (2019).

    CAS  PubMed  Google Scholar 

  • 9.

    Mostowy, S. & Cossart, P. Septins: the fourth component of the cytoskeleton. Nat. Rev. Mol. Cell Biol. 13, 183–194 (2012).

    CAS  PubMed  Google Scholar 

  • 10.

    Oh, Y. & Bi, E. Septin structure and function in yeast and beyond. Trends Cell Biol. 21, 141–148 (2011).

    CAS  PubMed  Google Scholar 

  • 11.

    Bridges, A. A. & Gladfelter, A. S. Fungal pathogens are platforms for discovering novel and conserved septin properties. Curr. Opin. Microbiol. 20, 42–48 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Angelis, D. & Spiliotis, E. T. Septin mutations in human cancers. Front. Cell Dev. Biol. 4, 122 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Bridges, A. A., Jentzsch, M. S., Oakes, P. W., Occhipinti, P. & Gladfelter, A. S. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. J. Cell Biol. 213, 23–32 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Cannon, K. S., Woods, B. L., Crutchley, J. M. & Gladfelter, A. S. An amphipathic helix enables septins to sense micrometer-scale membrane curvature. J. Cell Biol. 218, 1128–1137 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Spiliotis, E. T. & Gladfelter, A. S. Spatial guidance of cell asymmetry: septin GTPases show the way. Traffic 13, 195–203 (2012).

    CAS  PubMed  Google Scholar 

  • 16.

    Bertin, A. et al. Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. J. Mol. Biol. 404, 711–731 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Kihara, A. Very long-chain fatty acids: elongation, physiology and related disorders. J. Biochem. 152, 387–395 (2012).

    CAS  PubMed  Google Scholar 

  • 18.

    Bach, L. & Faure, J.-D. Role of very-long-chain fatty acids in plant development, when chain length does matter. C. R. Biol. 333, 361–370 (2010).

    CAS  PubMed  Google Scholar 

  • 19.

    Shang, B. et al. Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proc. Natl Acad. Sci. USA 113, 5101–5106 (2016).

    CAS  PubMed  Google Scholar 

  • 20.

    Schneiter, R. et al. Identification and biophysical characterization of a very-long-chain-fatty-acid-substituted phosphatidylinositol in yeast subcellular membranes. Biochem. J. 381, 941–949 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Rezanka, T., Kolouchova, I., Gharwalova, L., Palyzova, A. & Sigler, K. Identification and characterization of phospholipids with very long chain fatty acids in brewer’s yeast. Lipids 52, 1007–1017 (2017).

    CAS  PubMed  Google Scholar 

  • 22.

    Ramos, A. P., Lagüe, P., Lamoureux, G. & Lafleur, M. Effect of saturated very long-chain fatty acids on the organization of lipid membranes: a study combining 2H NMR spectroscopy and molecular dynamics simulations. J. Phys. Chem. B 120, 6951–6960 (2016).

    Google Scholar 

  • 23.

    Obara, K., Kojima, R. & Kihara, A. Effects on vesicular transport pathways at the late endosome in cells with limited very long-chain fatty acids. J. Lipid Res. 54, 831–842 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Roudier, F. et al. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22, 364–375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Villasmil, M. L., Gallo-Ebert, C., Liu, H. Y., Francisco, J. & Nickels, J. T. Jr. A link between very long chain fatty acid elongation and mating-specific yeast cell cycle arrest. Cell Cycle 16, 2192–2203 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Koyuncu, E., Purdy, J. G., Rabinowitz, J. D. & Shenk, T. Saturated very long chain fatty acids are required for the production of infectious human cytomegalovirus progeny. PLoS Pathog. 9, e1003333 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Ramakrishnan, S. et al. The intracellular parasite Toxoplasma gondii depends on the synthesis of long-chain and very long-chain unsaturated fatty acids not supplied by the host cell. Mol. Microbiol. 97, 64–76 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Dagdas, Y. F. et al. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336, 1590–1595 (2012).

    CAS  PubMed  Google Scholar 

  • 29.

    Wilson, R. A. & Talbot, N. J. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7, 185–195 (2009).

    CAS  PubMed  Google Scholar 

  • 30.

    Li, L. et al. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice. N. Phytol. 214, 1172–1187 (2017).

    CAS  Google Scholar 

  • 31.

    Noack, L. C. & Jaillais, Y. Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. Curr. Opin. Plant Biol. 40, 22–33 (2017).

    CAS  PubMed  Google Scholar 

  • 32.

    Qin, L. et al. Specific recruitment of phosphoinositide species to the plant–pathogen interfacial membrane underlies Arabidopsis susceptibility to fungal infection. Plant Cell https://doi.org/10.1105/tpc.19.00970 (2020).

  • 33.

    Casamayor, A. & Snyder, M. Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function. Mol. Cell. Biol. 23, 2762–2777 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Walker, E. H. et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 6, 909–919 (2000).

    CAS  PubMed  Google Scholar 

  • 35.

    Wenk, M. R. et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. Biotechnol. 21, 813–817 (2003).

    CAS  PubMed  Google Scholar 

  • 36.

    D’Souza, K. & Epand, R. M. Enrichment of phosphatidylinositols with specific acyl chains. BBA-Biomembranes 1838, 1501–1508 (2014).

    PubMed  Google Scholar 

  • 37.

    D’Souza, K. & Epand, R. M. The phosphatidylinositol synthase-catalyzed formation of phosphatidylinositol does not exhibit acyl chain specificity. Biochemistry 54, 1151–1153 (2015).

    PubMed  Google Scholar 

  • 38.

    Jakobsson, A., Westerberg, R. & Jacobsson, A. Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog. Lipid Res. 45, 237–249 (2006).

    CAS  PubMed  Google Scholar 

  • 39.

    Sharma, S. et al. Sphingolipid biosynthetic pathway genes FEN1 and SUR4 modulate amphotericin B resistance. Antimicrob. Agents Chemother. 58, 2409–2414 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Busi, R. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids. Pest Manag. Sci. 70, 1378–1384 (2014).

    CAS  PubMed  Google Scholar 

  • 41.

    Khan, A., McQuilken, M. & Gladfelter, A. S. Septins and generation of asymmetries in fungal cells. Annu. Rev. Microbiol. 69, 487–503 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Leonard, A. E., Pereira, S. L., Sprecher, H. & Huang, Y. S. Elongation of long-chain fatty acids. Prog. Lipid Res. 43, 36–54 (2004).

    CAS  PubMed  Google Scholar 

  • 43.

    Godwin, J., Norsworthy, J. K. & Scott, R. C. Selectivity of very-long-chain fatty acid-inhibiting herbicides in rice as influenced by application timing and soil texture. Crop Forage Turfgrass Manag. 4, 180016 (2018).

    Google Scholar 

  • 44.

    Sassa, T. & Kihara, A. Metabolism of very long-chain fatty acids: genes and pathophysiology. Biomol. Ther. 22, 83–92 (2014).

    CAS  Google Scholar 

  • 45.

    Talbot, N. J., Ebbole, D. J. & Hamer, J. E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5, 1575–1590 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Hou, Y.-P. et al. Baseline sensitivity of Bipolaris maydis to the novel succinate dehydrogenase inhibitor benzovindiflupyr and its efficacy. Pestic. Biochem. Physiol. 149, 81–88 (2018).

    CAS  PubMed  Google Scholar 

  • 47.

    Chen, T. et al. Two members of TaRLK family confer powdery mildew resistance in common wheat. BMC Plant Biol. 16, 27 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Hu, J. & Xia, Y. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F1F0-ATPase subunit genes. Pest Manag. Sci. 75, 180–186 (2019).

    CAS  PubMed  Google Scholar 

  • 49.

    He, M. et al. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. Autophagy 14, 1543–1561 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Li, W. et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170, 114–126 (2017).

    CAS  PubMed  Google Scholar 

  • 51.

    Lu, J., Cao, H., Zhang, L., Huang, P. & Lin, F. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus. PLoS Pathog. 10, e1004432 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Turgeon, B. G., Condon, B., Liu, J. & Zhang, N. in Molecular and Cell Biology Methods for Fungi Methods in Molecular Biology Vol. 638 (ed. Sharon, A.) 3–19 (Humana Press, 2010).

  • 53.

    Hamilton, P. J. et al. PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein. Nat. Chem. Biol. 10, 582–589 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Lam, S. M. et al. Lipidomic analysis of human tear fluid reveals structure-specific lipid alterations in dry eye syndrome. J. Lipid Res. 55, 299–306 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Clark, J. et al. Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat. Methods 8, 267–272 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Wang, Z. et al. LecRK-V, an L-type lectin receptor kinase in Haynaldia villosa, plays positive role in resistance to wheat powdery mildew. Plant Biotechnol. J. 16, 50–62 (2018).

    CAS  PubMed  Google Scholar 

  • Source