• 1.

    Nalwa, H. S. Handbook of Nanostructured Biomaterials and their Applications in Nanobiotechnology (American Scientific, 2005).

  • 2.

    Kryuchkov, M., Blagodatski, A., Cherepanov, V. & Katanaev, V. L. in Functional Surfaces in Biology III: Diversity of the Physical Phenomena (eds Gorb, S. N. & Gorb, E. V.) 29–52 (Springer, 2017).

  • 3.

    Peisker, H. & Gorb, S. N. Always on the bright side of life: anti-adhesive properties of insect ommatidia grating. J. Exp. Biol. 213, 3457–3462 (2010).

    PubMed  Google Scholar 

  • 4.

    Blagodatski, A., Sergeev, A., Kryuchkov, M., Lopatina, Y. & Katanaev, V. L. Diverse set of Turing nanopatterns coat corneae across insect lineages. Proc. Natl Acad. Sci. USA 112, 10750–10755 (2015).

    ADS  PubMed  Google Scholar 

  • 5.

    Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    ADS  MathSciNet  MATH  Google Scholar 

  • 6.

    Kondo, S. & Miura, T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010).

    ADS  MathSciNet  PubMed  MATH  Google Scholar 

  • 7.

    Bhushan, B. Springer Handbook of Nanotechnology 4th edn (Springer, 2017).

  • 8.

    Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    PubMed  Google Scholar 

  • 9.

    Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).

    Google Scholar 

  • 10.

    Büscher, T. H., Kryuchkov, M., Katanaev, V. L. & Gorb, S. N. Versatility of Turing patterns potentiates rapid evolution in tarsal attachment microstructures of stick and leaf insects (Phasmatodea). J. R. Soc. Interface 15, 20180281 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Gemne, G. ontogenesis of corneal surface ultrastructure in nocturnal Lepidoptera. Philos. Trans. R. Soc. Lond. B 262, 343–363 (1971).

    ADS  Google Scholar 

  • 12.

    Murray, J. D. Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, 2001).

  • 13.

    Markow, T. A. & O’Grady, P. M. Drosophila biology in the genomic age. Genetics 177, 1269–1276 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Bernhard, C. G. & Miller, W. H. A corneal nipple pattern in insect compound eyes. Acta Physiol. Scand. 56, 385–386 (1962).

    PubMed  Google Scholar 

  • 15.

    Kryuchkov, M. et al. analysis of micro- and nano-structures of the corneal surface of Drosophila and its mutants by atomic force microscopy and optical diffraction. PLoS One 6, e22237 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Kryuchkov, M., Lehmann, J., Schaab, J., Fiebig, M. & Katanaev, V. L. Antireflective nanocoatings for UV-sensation: the case of predatory owlfly insects. J. Nanobiotechnology 15, 52 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Stark, W. S. & Wasserman, G. S. Transient and receptor potentials in the electroretinogram of Drosophila. Vision Res. 12, 1771–1775 (1972).

    PubMed  Google Scholar 

  • 18.

    Anderson, M. S. & Gaimari, S. D. Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes. J. Struct. Biol. 142, 364–368 (2003).

    PubMed  Google Scholar 

  • 19.

    Chandran, R., Williams, L., Hung, A., Nowlin, K. & LaJeunesse, D. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Micron 82, 74–85 (2016).

    PubMed  Google Scholar 

  • 20.

    Kaya, M., Sargin, I., Al-Jaf, I., Erdogan, S. & Arslan, G. Characteristics of corneal lens chitin in dragonfly compound eyes. Int. J. Biol. Macromol. 89, 54–61 (2016).

    PubMed  Google Scholar 

  • 21.

    Locke, M. The Wigglesworth lecture: insects for studying fundamental problems in biology. J. Insect Physiol. 47, 495–507 (2001).

    PubMed  Google Scholar 

  • 22.

    Nickerl, J., Tsurkan, M., Hensel, R., Neinhuis, C. & Werner, C. The multi-layered protective cuticle of Collembola: a chemical analysis. J. R. Soc. Interface 11, 20140619 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Kryuchkov, M. et al. Alternative moth-eye nanostructures: antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors. J. Nanobiotechnology 15, 61 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Kim, E. et al. Characterization of the Drosophila melanogaster retinin gene encoding a cornea-specific protein. Insect Mol. Biol. 17, 537–543 (2008).

    PubMed  Google Scholar 

  • 25.

    Komori, N., Usukura, J. & Matsumoto, H. Drosocrystallin, a major 52 kDa glycoprotein of the Drosophila melanogaster corneal lens. Purification, biochemical characterization, and subcellular localization. J. Cell Sci. 102, 191–201 (1992).

    PubMed  Google Scholar 

  • 26.

    Karouzou, M. V. et al. Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem. Mol. Biol. 37, 754–760 (2007).

    PubMed  Google Scholar 

  • 27.

    Stahl, A. L., Charlton-Perkins, M., Buschbeck, E. K. & Cook, T. A. The cuticular nature of corneal lenses in Drosophila melanogaster. Dev. Genes Evol. 227, 271–278 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Cheng, J. B. & Russell, D. W. Mammalian wax biosynthesis. I. Identification of two fatty acyl-coenzyme A reductases with different substrate specificities and tissue distributions. J. Biol. Chem. 279, 37789–37797 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Cheng, J. B. & Russell, D. W. Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family. J. Biol. Chem. 279, 37798–37807 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Kunst, L. & Samuels, A. L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42, 51–80 (2003).

    PubMed  Google Scholar 

  • 31.

    Lin, C. et al. Double suppression of the Gα protein activity by RGS proteins. Mol. Cell 53, 663–671 (2014).

    PubMed  Google Scholar 

  • 32.

    Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta Proteins Proteom. 1751, 119–139 (2005).

    Google Scholar 

  • 33.

    Clarke, D. T. in Protein Folding, Misfolding, and Disease: Methods and Protocols (eds Hill, A. F. et al.) 59–72 (Humana, 2011).

  • 34.

    Biancalana, M. & Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta Proteins Proteom. 1804, 1405–1412 (2010).

    Google Scholar 

  • 35.

    Chandra, S., Chen, X., Rizo, J., Jahn, R. & Sudhof, T. C. A broken α-helix in folded α-synuclein. J. Biol. Chem. 278, 15313–15318 (2003).

    PubMed  Google Scholar 

  • 36.

    van der Werf, K. O., Putman, C. A. J., Degrooth, B. G. & Greve, J. Adhesion force imaging in air and liquid by adhesion mode atomic-force microscopy. Appl. Phys. Lett. 65, 1195–1197 (1994).

    ADS  Google Scholar 

  • 37.

    Global Industry Analysts Nanocoatings — Global Market Trajectory and Analysis https://researchandmarkets.com/reports/4721438/nanocoatings-global-market-trajectory-and (2020).

  • 38.

    Katanaev, V. L. & Kryuchkov, M. V. The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. Biochemistry (Mosc.) 76, 1556–1581 (2011).

    PubMed  Google Scholar 

  • 39.

    Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific ϕC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007).

    ADS  PubMed  Google Scholar 

  • 40.

    Roberts, D. B. Drosophila: A Practical Approach (Oxford Univ. Press, 1998).

  • 41.

    Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012).

    Google Scholar 

  • Source