• 1.

    Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

  • 3.

    Poudyal, R. R. et al. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat. Commun. 10, 490 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Wippich, F. et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791–805 (2013).

    CAS  PubMed  Google Scholar 

  • 6.

    Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Hnisz, D. et al. Separation model for transcriptional control. Cell 169, 13–23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

  • 9.

    Larson, A. G. et al. Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of membrane receptors. Elife 3, e04123 (2014).

    PubMed Central  Google Scholar 

  • 12.

    Bouchard, J. J. et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol. Cell 72, 19.e8–36.e8 (2018).

    Google Scholar 

  • 13.

    Alberti, S. & Dormann, D. Liquid-liquid phase separation in disease. Annu. Rev. Genet. 53, 171–194 (2019).

    CAS  PubMed  Google Scholar 

  • 14.

    Elbaum-Garfinkle, S. Matter over mind: liquid phase separation and neurodegeneration. J. Biol. Chem. 294, 7160–7168 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Peskett, T. R. et al. A liquid to solid phase transition underlying pathological huntingtin exon1 aggregation. Mol. Cell 70, 588.e6–601.e6 (2018).

    Google Scholar 

  • 16.

    Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    CAS  PubMed  Google Scholar 

  • 17.

    Liu, Y., Winter, H. H. & Perry, S. L. Linear viscoelasticity of complex coacervates. Adv. Colloid Interface Sci. 239, 46–60 (2017).

    CAS  PubMed  Google Scholar 

  • 18.

    Bracha, D., Walls, M. T. & Brangwynne, C. P. Probing and engineering liquid-phase organelles. Nat. Biotechnol. 37, 1435–1445 (2019).

    CAS  PubMed  Google Scholar 

  • 19.

    Reinkemeier, C. D., Girona, G. E. & Lemke, E. A. Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes. Science 363, eaaw2644 (2019).

    CAS  PubMed  Google Scholar 

  • 20.

    Martin, N. et al. Photoswitchable phase separation and oligonucleotide trafficking in DNA coacervate microdroplets. Angew. Chem. Int. Ed. Engl. 58, 14594–14598 (2019).

    CAS  PubMed  Google Scholar 

  • 21.

    Schuster, B. S. et al. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat. Commun. 9, 2985 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    CAS  Google Scholar 

  • 23.

    Lin, Y. H., Forman-Kay, J. D. & Chan, H. S. Theories for sequence-dependent phase behaviors of biomolecular condensates. Biochemistry 57, 2499–2508 (2018).

    CAS  PubMed  Google Scholar 

  • 24.

    Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Vernon, R. M. et al. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife 7, e31486 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Chang, L. W. et al. Sequence and entropy-based control of complex coacervates. Nat. Commun. 8, 1273 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688.e16–699.e16 (2018).

    Google Scholar 

  • 28.

    Chong, P. A., Vernon, R. M. & Forman-Kay, J. D. RGG/RG motif regions in RNA binding and phase separation. J. Mol. Biol. 430, 4650–4665 (2018).

    CAS  PubMed  Google Scholar 

  • 29.

    Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706.e13–719.e13 (2018).

    Google Scholar 

  • 32.

    Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-pi interactions. Cell 173, 720.e15–734.e15 (2018).

    Google Scholar 

  • 33.

    Tsang, B. et al. Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proc. Natl Acad. Sci. USA 116, 4218–4227 (2019).

    CAS  PubMed  Google Scholar 

  • 34.

    Arribas-Layton, M., Dennis, J., Bennett, E. J., Damgaard, C. K. & Lykke-Andersen, J. The C-terminal RGG domain of human Lsm4 promotes processing body formation stimulated by arginine dimethylation. Mol. Cell Biol. 36, 2226–2235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Saha, S. et al. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166, 1572.e16–1584.e16 (2016).

    Google Scholar 

  • 36.

    Putnam, A., Cassani, M., Smith, J. & Seydoux, G. A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos. Nat. Struct. Mol. Biol. 26, 220–226 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Hofweber, M. & Dormann, D. Friend or foe-post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 294, 7137–7150 (2019).

    CAS  PubMed  Google Scholar 

  • 38.

    Ferreon, J. C. et al. Acetylation disfavors tau phase separation. Int. J. Mol. Sci. 19, 1360 (2018).

  • 39.

    Brady, J. P. et al. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl Acad. Sci. USA 114, E8194–E8203 (2017).

    CAS  PubMed  Google Scholar 

  • 40.

    Boeynaems, S. et al. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).

    CAS  PubMed  Google Scholar 

  • 41.

    Alshareedah, I. et al. Interplay between short-range attraction and long-range repulsion controls reentrant liquid condensation of ribonucleoprotein-RNA complexes. J. Am. Chem. Soc. 141, 14593–14602 (2019).

    CAS  PubMed  Google Scholar 

  • 42.

    Ukmar-Godec, T. et al. Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat. Commun. 10, 2909 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Holehouse, A. S. & Pappu, R. V. Functional implications of intracellular phase transitions. Biochemistry 57, 2415–2423 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Sawyer, I. A., Sturgill, D. & Dundr, M. Membraneless nuclear organelles and the search for phases within phases. Wiley Interdiscip. Rev. RNA 10, e1514 (2019).

    PubMed  Google Scholar 

  • 45.

    Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Kim, T. H. et al. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science 365, 825–829 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Simon, J. R., Carroll, N. J., Rubinstein, M., Chilkoti, A. & Lopez, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Mountain, G. A. & Keating, C. D. Formation of multiphase complex coacervates and partitioning of biomolecules within them. Biomacromolecules 21, 630–640 (2019).

    PubMed  Google Scholar 

  • 49.

    Lu, T. & Spruijt, E. Multiphase complex coacervate droplets. J. Am. Chem. Soc. 142, 2905–2914 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Veis, A. A review of the early development of the thermodynamics of the complex coacervation phase separation. Adv. Colloid Interface Sci. 167, 2–11 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    van der Gucht, J., Spruijt, E., Lemmers, M. & Cohen Stuart, M. A. Polyelectrolyte complexes: bulk phases and colloidal systems. J. Colloid Interface Sci. 361, 407–422 (2011).

    ADS  PubMed  Google Scholar 

  • 52.

    Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 3, 720–724 (2011).

    CAS  PubMed  Google Scholar 

  • 53.

    Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford University Press, Oxford, 2003).

  • 54.

    Saito, M. et al. Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol. 15, 51–61 (2019).

    CAS  PubMed  Google Scholar 

  • 55.

    Lee, K. H. et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774.e17–788.e17 (2016).

    Google Scholar 

  • 56.

    Boeynaems, S. et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol. Cell 65, 1044.e5–1055.e5 (2017).

    Google Scholar 

  • 57.

    Ryan, V. H. et al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69, 465.e7–479.e7 (2018).

    Google Scholar 

  • 58.

    Mitrea, D. M. et al. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation. Nat. Commun. 9, 842 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Eggers, J., Lister, J. R. & Stone, H. A. Coalescence of liquid drops. J. Fluid Mech. 401, 293–310 (1999).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  • 60.

    Li, L., Vorobyov, I. & Allen, T. W. The different interactions of lysine and arginine side chains with lipid membranes. J. Phys. Chem. B 117, 11906–11920 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Mitchell, D. J., Kim, D. T., Steinman, L., Fathman, C. G. & Rothbard, J. B. Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res. 56, 318–325 (2000).

    CAS  PubMed  Google Scholar 

  • 62.

    Armstrong, C. T., Mason, P. E., Anderson, J. L. & Dempsey, C. E. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels. Sci. Rep. 6, 21759 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Smith, B. C. & Denu, J. M. Chemical mechanisms of histone lysine and arginine modifications. Biochim. Biophys. Acta 1789, 45–57 (2009).

    CAS  PubMed  Google Scholar 

  • 64.

    Gallivan, J. P. & Dougherty, D. A. Cation-pi interactions in structural biology. Proc. Natl Acad. Sci. USA 96, 9459–9464 (1999).

    ADS  CAS  PubMed  Google Scholar 

  • 65.

    Calnan, B. J., Tidor, B., Biancalana, S., Hudson, D. & Frankel, A. D. Arginine-mediated RNA recognition: the arginine fork. Science 252, 1167–1171 (1991).

    ADS  CAS  PubMed  Google Scholar 

  • 66.

    Jacobs, W. M. & Frenkel, D. Phase transitions in biological systems with many components. Biophys. J. 112, 683–691 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Schmidt, H. B. & Rohatgi, R. In vivo formation of vacuolated multi-phase compartments lacking membranes. Cell Rep. 16, 1228–1236 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Yin, Y. et al. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation. Nat. Commun. 7, 10658 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Ceballos, A. V., McDonald, C. J. & Elbaum-Garfinkle, S. Methods and strategies to quantify phase separation of disordered proteins. Methods Enzymol. 611, 31–50 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Source