• 1.

    Notelovitz M. Osteoporosis: screening, prevention, and management. Fertil Steril 1993;59:707–25.

    CAS  PubMed  Google Scholar 

  • 2.

    Peacock M, Turner CH, Econs MJ, Foroud T. Genetics of osteoporosis. Endocr Rev 2002;23:303–26.

    CAS  PubMed  Google Scholar 

  • 3.

    Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002;359:1761–7.

    PubMed  Google Scholar 

  • 4.

    Xia WB, He SL, Xu L, Liu AM, Jiang Y, Li M, et al. Rapidly increasing rates of hip fracture in Beijing, China. J Bone Min Res 2012;27:125–9.

    Google Scholar 

  • 5.

    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Min Res 2007;22:465–75.

    Google Scholar 

  • 6.

    Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res: Off J Am Soc Bone Miner Res 1997;12:2076–81.

    CAS  Google Scholar 

  • 7.

    Pei YF, Hu WZ, Yang XL, Wei XT, Feng GJ, Zhang H, et al. Two functional variants at 6p21.1 were associated with lean mass. Skelet Muscle 2019;9:28.

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Jensky NE, Criqui MH, Wright CM, Wassel CL, Alcaraz JE, Allison MA. The association between abdominal body composition and vascular calcification. Obes (Silver Spring) 2011;19:2418–24.

    Google Scholar 

  • 9.

    Wassel CL, Laughlin GA, Saad SD, Araneta MR, Wooten W, Barrett-Connor E, et al. Associations of abdominal muscle area with 4-year change in coronary artery calcium differ by ethnicity among post-menopausal women. Ethn Dis 2015;25:435–42.

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Hicks GE, Fritz JM, Delitto A, McGill SM. Preliminary development of a clinical prediction rule for determining which patients with low back pain will respond to a stabilization exercise program. Arch Phys Med Rehabil 2005;86:1753–62.

    PubMed  Google Scholar 

  • 11.

    Abraham KA, Feingold H, Fuller DD, Jenkins M, Mateika JH, Fregosi RF. Respiratory-related activation of human abdominal muscles during exercise. J Physiol 2002;541(Pt 2):653–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Yamamoto J, Bergstrom J, Davis A, Wing D, Schousboe JT, Nichols JF, et al. Trunk lean mass and its association with 4 different measures of thoracic kyphosis in older community dwelling persons. PLoS ONE 2017;12:e0174710.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine 2014;45:165–77.

    CAS  PubMed  Google Scholar 

  • 14.

    Brotto M, Bonewald L. Bone and muscle: Interactions beyond mechanical. Bone 2015;80:109–14.

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Pei YF, Liu L, Liu TL, Yang XL, Zhang H, Wei XT, et al. Joint association analysis identified 18 new loci for bone mineral density. J Bone Miner Res: Off J Am Soc Bone Miner Res 2019;34:1086–94.

    CAS  Google Scholar 

  • 16.

    Kemp JP, Morris JA, Medina-Gomez C, Forgetta V, Warrington NM, Youlten SE, et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet 2017;49:1468–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 2012;44:491–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Zillikens MC, Demissie S, Hsu YH, Yerges-Armstrong LM, Chou WC, Stolk L, et al. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat Commun 2017;8:80.

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, Wang L, et al. Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am J Hum Genet 2009;84:418–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Medina-Gomez C, Kemp JP, Dimou NL, Kreiner E, Chesi A, Zemel BS, et al. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nat Commun 2017;8:121.

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Sun L, Tan LJ, Lei SF, Chen XD, Li X, Pan R, et al. Bivariate genome-wide association analyses of femoral neck bone geometry and appendicular lean mass. PLoS ONE 2011;6:e27325.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Design of the Women’s Health Initiative clinical trial and observational study. The Women’s Health Initiative Study Group. Control Clin Trials 1998;19:61–109.

    Google Scholar 

  • 23.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012;491:56–65.

    Google Scholar 

  • 25.

    Zhang L, Pei YF, Fu X, Lin Y, Wang YP, Deng HW. FISH: fast and accurate diploid genotype imputation via segmental hidden Markov model. Bioinformatics 2014;30:1876–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Zhang L, Bonham AJ, Li J, Pei YF, Chen J, Papasian CJ, et al. Family-based bivariate association tests for quantitative traits. PLoS ONE 2009;4:e8133.

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ, et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 2015;526:112–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J, Lush MJ, et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet 2015;47:373–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, Kang HM, et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am J Hum Genet 2015;97:816–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Zhang L, Choi HJ, Estrada K, Leo PJ, Li J, Pei YF, et al. Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum Mol Genet 2014;23:1923–33.

    CAS  PubMed  Google Scholar 

  • 31.

    Konstantopoulos S “Fixed and Mixed Effects Models in Meta-Analysis.”. IZA Discussion Paper 2198. 2006.

  • 32.

    Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics 2010;26:2867–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012;40(Database issue):D930–4.

    CAS  PubMed  Google Scholar 

  • 34.

    International HapMap Consortium. A haplotype map of the human genome. Nature 2005;437:1299–320.

    Google Scholar 

  • 35.

    Michailidou K, Lindstrom S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017;551:92–4.

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Tin A, Marten J, Halperin Kuhns VL, Li Y, Wuttke M, Kirsten H, et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet 2019;51:1459–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Chang D, Nalls MA, Hallgrimsdottir IB, Hunkapiller J, van der Brug M, Cai F, et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet 2017;49:1511–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Local A, Huang H, Albuquerque CP, Singh N, Lee AY, Wang W, et al. Identification of H3K4me1-associated proteins at mammalian enhancers. Nat Genet 2018;50:73–82.

    CAS  PubMed  Google Scholar 

  • 39.

    Yang TL, Guo Y, Liu YJ, Shen H, Liu YZ, Lei SF, et al. Genetic variants in the SOX6 gene are associated with bone mineral density in both Caucasian and Chinese populations. Osteoporos Int 2012;23:781–7.

    CAS  PubMed  Google Scholar 

  • 40.

    Liu YZ, Pei YF, Liu JF, Yang F, Guo Y, Zhang L, et al. Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PLoS ONE 2009;4:e6827.

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Dy P, Smits P, Silvester A, Penzo-Mendez A, Dumitriu B, Han Y, et al. Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage. Dev Biol 2010;341:346–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet 2019;51:258–66.

    CAS  PubMed  Google Scholar 

  • 43.

    Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 2008;40:768–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Fernandez-Rhodes L, Demerath EW, Cousminer DL, Tao R, Dreyfus JG, Esko T, et al. Association of adiposity genetic variants with menarche timing in 92,105 women of European descent. Am J Epidemiol 2013;178:451–60.

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Malhotra AK, Correll CU, Chowdhury NI, Muller DJ, Gregersen PK, Lee AT, et al. Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch Gen Psychiatry 2012;69:904–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Pei YF, Zhang L, Liu Y, Li J, Shen H, Liu YZ, et al. Meta-analysis of genome-wide association data identifies novel susceptibility loci for obesity. Hum Mol Genet 2014;23:820–30.

    CAS  PubMed  Google Scholar 

  • 47.

    Hsu YH, Zillikens MC, Wilson SG, Farber CR, Demissie S, Soranzo N, et al. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits. PLoS Genet 2010;6:e1000977.

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Jackson HE, Ono Y, Wang X, Elworthy S, Cunliffe VT, Ingham PW. The role of Sox6 in zebrafish muscle fiber type specification. Skelet Muscle 2015;5:2.

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Braun TP, Orwoll B, Zhu X, Levasseur PR, Szumowski M, Nguyen ML, et al. Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system. PLoS ONE 2012;7:e42183.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 2015;348:648–60.

    Google Scholar 

  • 51.

    Urano T, Shiraki M, Sasaki N, Ouchi Y, Inoue S. Large-scale analysis reveals a functional single-nucleotide polymorphism in the 5′-flanking region of PRDM16 gene associated with lean body mass. Aging cell 2014;13:739–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA, et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PloS ONE 2012;7:e51954.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Zhang L, Pei YF, Li J, Papasian CJ, Deng HW. Univariate/multivariate genome-wide association scans using data from families and unrelated samples. PLoS ONE 2009;4:e6502.

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Zhu X, Feng T, Tayo BO, Liang J, Young JH, Franceschini N, et al. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am J Hum Genet 2015;96:21–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods 2014;11:407–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Zhang H, Liu CT, Wang X. An association test for multiple traits based on the generalized Kendall’s Tau. J Am Stat Assoc 2010;105:473–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Liu YJ, Zhang L, Pei Y, Papasian CJ, Deng HW. On genome-wide association studies and their meta-analyses: lessons learned from osteoporosis studies. J Clin Endocrinol Metab 2013;98:E1278–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Hirschfeld HP, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int 2017;28:2781–90.

    CAS  PubMed  Google Scholar 

  • Source