• 1.

    O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. The Review on Antimicrobial Resistance, http://www.his.org.uk/files/4514/1829/6668/AMR_Review_Paper_-_Tackling_a_crisis_for_the_health_and_wealth_of_nations_1.pdf (2014).

  • 2.

    Klugman, K. P. & Black, S. Impact of existing vaccines in reducing antibiotic resistance: primary and secondary effects. Proc. Natl Acad. Sci. USA 115, 12896–12901 (2018).

    CAS  PubMed  Google Scholar 

  • 3.

    Kennedy, D. A. & Read, A. F. Why does drug resistance readily evolve but vaccine resistance does not? Proc. Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.2562 (2017).

  • 4.

    Nichol, K. L. Influenza vaccination in the elderly: impact on hospitalisation and mortality. Drugs Aging 22, 495–515 (2005).

    PubMed  Google Scholar 

  • 5.

    Poland, G. A., Jacobson, R. M. & Ovsyannikova, I. G. Trends affecting the future of vaccine development and delivery: the role of demographics, regulatory science, the anti-vaccine movement, and vaccinomics. Vaccine 27, 3240–3244 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Rappuoli, R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19, 2688–2691 (2001).

    CAS  PubMed  Google Scholar 

  • 7.

    Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    PubMed  Google Scholar 

  • 8.

    Lecrenier, N. et al. Development of a recombinant adjuvanted herpes zoster subunit vaccine and its implications for shingles prevention. Expert Rev. Vaccines. 17, 619–634 (2018).

    CAS  PubMed  Google Scholar 

  • 9.

    World Health Organization. Ten threats to global health in 2019. https://www.who.int/emergencies/ten-threats-to-global-health-in-2019 (2019)

  • 10.

    Cassini, A. et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 19, 56–66 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Esposito, S. & De Simone, G. Update on the main MDR pathogens: prevalence and treatment options. Infez. Med 25, 301–310 (2017).

    PubMed  Google Scholar 

  • 12.

    Weiner, L. M. et al. Vital signs: preventing antibiotic-resistant infections in hospitals—United States, 2014. Am. J. Transpl. 16, 2224–2230 (2016).

    CAS  Google Scholar 

  • 13.

    Centers for Disease Control and Pevention. ABCs: Surveillance Reports Main Page—Active Bacterial Core Surveillance, http://www.cdc.gov/abcs/reports-findings/surv-reports.html (2020)

  • 14.

    Sogaard, M., Norgaard, M., Dethlefsen, C. & Schonheyder, H. C. Temporal changes in the incidence and 30-day mortality associated with bacteremia in hospitalized patients from 1992 through 2006: a population-based cohort study. Clin. Infect. Dis. 52, 61–69 (2011).

    PubMed  Google Scholar 

  • 15.

    Laupland, K. B. & Church, D. L. Population-based epidemiology and microbiology of community-onset bloodstream infections. Clin. Microbiol Rev. 27, 647–664 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Poolman, J. T. & Wacker, M. Extraintestinal pathogenic Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. J. Infect. Dis. 213, 6–13 (2016).

    CAS  PubMed  Google Scholar 

  • 17.

    Global tuberculosis report 2019. Geneva: World Health Organizatio. Licence: CC BY-NC-SA3.OIGO. https://www.who.int/tb/publications/global_report/en/. (2019)

  • 18.

    Lessa, F. C., Winston, L. G. & McDonald, L. C., Emerging Infections Program, C. d. S. T. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 2369–2370 (2015).

    PubMed  Google Scholar 

  • 19.

    Centers for Disease Control and Prevention. Vital signs: preventing Clostridium difficile infections. MMWR Morb. Mortal. Wkly Rep. 61, 157–162 (2012).

  • 20.

    Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (2013)

  • 21.

    Fay, K. et al. Assessment of health care exposures and outcomes in adult patients with sepsis and septic shock. JAMA Netw. Open 3, e206004 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Kyaw, M. H. et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N. Engl. J. Med. 354, 1455–1463 (2006).

    CAS  PubMed  Google Scholar 

  • 23.

    Bloom, D. E., Black, S., Salisbury, D. & Rappuoli, R. Antimicrobial resistance and the role of vaccines. Proc. Natl Acad. Sci. USA 115, 12868–12871 (2018).

    CAS  PubMed  Google Scholar 

  • 24.

    United Nations, Department of Economic and Social Affairs. World Population Prospects: 2019. Highlights. https://population.un.org/wpp/Publications/Files/WPP2019_10KeyFindings.pdf (2019).

  • 25.

    Gruver, A. L., Hudson, L. L. & Sempowski, G. D. Immunosenescence of ageing. J. Pathol. 211, 144–156 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Aabenhus, R., Hansen, M. P., Siersma, V. & Bjerrum, L. Clinical indications for antibiotic use in Danish general practice: results from a nationwide electronic prescription database. Scand. J. Prim. Health Care 35, 162–169 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Murphy, S. L., Xu, J., Kochanek, K. D., Curtin, S. C. & Arias, E. Deaths: final data for 2015. Natl Vital-Stat. Rep. 66, 1–75 (2017).

    PubMed  Google Scholar 

  • 28.

    Ani, C., Farshidpanah, S., Bellinghausen Stewart, A. & Nguyen, H. B. Variations in Organism-Specific Severe Sepsis Mortality in the United States: 1999-2008. Crit. Care Med. https://doi.org/10.1097/CCM.0000000000000555 (2014).

  • 29.

    Edelsberg, J. et al. Prevalence of antibiotic resistance in US hospitals. Diagn. Microbiol Infect. Dis. 78, 255–262 (2014).

    CAS  PubMed  Google Scholar 

  • 30.

    Sievert, D. M. et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect. Control Hosp. Epidemiol. 34, 1–14 (2013).

    PubMed  Google Scholar 

  • 31.

    Weiner, L. M. et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 37, 1288–1301 (2016).

  • 32.

    Rhee, C. et al. Prevalence of antibiotic-resistant pathogens in culture-proven sepsis and outcomes associated with inadequate and broad-spectrum empiric antibiotic use. JAMA Netw. Open 3, e202899 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Laupland, K. B., Kibsey, P. C., Gregson, D. B. & Galbraith, J. C. Population-based laboratory assessment of the burden of community-onset bloodstream infection in Victoria, Canada. Epidemiol. Infect. 141, 174–180 (2013).

    CAS  PubMed  Google Scholar 

  • 34.

    Skogberg, K., Lyytikainen, O., Ruutu, P., Ollgren, J. & Nuorti, J. P. Increase in bloodstream infections in Finland, 1995-2002. Epidemiol. Infect. 136, 108–114 (2008).

    CAS  PubMed  Google Scholar 

  • 35.

    Wilson, J. et al. Trends among pathogens reported as causing bacteraemia in England, 2004–2008. Clin. Microbiol Infect. 17, 451–458 (2011).

    CAS  PubMed  Google Scholar 

  • 36.

    Cunningham, A. L. et al. Efficacy of the Herpes Zoster subunit vaccine in adults 70 years of age or older. N. Engl. J. Med. 375, 1019–1032 (2016).

    CAS  PubMed  Google Scholar 

  • 37.

    HEPLISAV-B. Prescribing Information. https://www.heplisavb.com/assets/pdfs/HEPLISAV-B-Prescribing-Information.pdf (2020).

  • 38.

    Byng-Maddick, R. & Noursadeghi, M. Does tuberculosis threaten our ageing populations? BMC Infect. Dis. 16, 119 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Urwin, R. et al. Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect. Immun. 72, 5955–5962 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Nizet, V. Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. J. Allergy Clin. Immunol. 120, 13–22 (2007).

    CAS  PubMed  Google Scholar 

  • 41.

    Silva Miranda, M., Breiman, A., Allain, S., Deknuydt, F. & Altare, F. The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin. Dev. Immunol. 2012, 139127 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Lucero, M. G. et al. Pneumococcal conjugate vaccines for preventing vaccine-type invasive pneumococcal disease and X-ray defined pneumonia in children less than two years of age. Cochrane Database Syst. Rev. CD004977, (2009).

  • 43.

    Thumburu, K. K. et al. Two or three primary dose regime for Haemophilus influenzae type b conjugate vaccine: meta-analysis of randomized controlled trials. Ther. Adv. Vaccines 3, 31–40 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Bonten, M. J. et al. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N. Engl. J. Med. 372, 1114–1125 (2015).

    CAS  PubMed  Google Scholar 

  • 45.

    Huttner, A. et al. Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(17)30108-1 (2017).

  • 46.

    Scherpenisse, M. et al. Detection of systemic and mucosal HPV-specific IgG and IgA antibodies in adolescent girls one and two years after HPV vaccination. Hum. Vaccin Immunother. 9, 314–321 (2013).

    CAS  PubMed  Google Scholar 

  • 47.

    Kaur, R., Kim, T., Casey, J. R. & Pichichero, M. E. Antibody in middle ear fluid of children originates predominantly from sera and nasopharyngeal secretions. Clin. Vaccin. Immunol. 19, 1593–1596 (2012).

    CAS  Google Scholar 

  • 48.

    Wagner, D. K. et al. Analysis of immunoglobulin G antibody responses after administration of live and inactivated influenza A vaccine indicates that nasal wash immunoglobulin G is a transudate from serum. J. Clin. Microbiol. 25, 559–562 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    DeLyria, E. S., Redline, R. W. & Blanchard, T. G. Vaccination of mice against H pylori induces a strong Th-17 response and immunity that is neutrophil dependent. Gastroenterology 136, 247–256 (2009).

    CAS  PubMed  Google Scholar 

  • 50.

    Warfel, J. M., Zimmerman, L. I. & Merkel, T. J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc. Natl Acad. Sci. USA 111, 787–792 (2014).

    CAS  PubMed  Google Scholar 

  • 51.

    Brown, A. F. et al. Memory Th1 cells are protective in invasive Staphylococcus aureus Infection. PLoS Pathog. 11, e1005226 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Middleton, D. R., Sun, L., Paschall, A. V. & Avci, F. Y. T cell-mediated humoral immune responses to type 3 capsular polysaccharide of Streptococcus pneumoniae. J. Immunol. 199, 598–603 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Guglani, L. & Khader, S. A. Th17 cytokines in mucosal immunity and inflammation. Curr. Opin. HIV AIDS 5, 120–127 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    CAS  PubMed  Google Scholar 

  • 55.

    Bao, S., Beagley, K. W., France, M. P., Shen, J. & Husband, A. J. Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection. Immunology 99, 464–472 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Flynn, J. L. et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    CAS  PubMed  Google Scholar 

  • 57.

    Reinhardt, R. L., Liang, H. E. & Locksley, R. M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Takagi, R. et al. B cell chemoattractant CXCL13 is preferentially expressed by human Th17 cell clones. J. Immunol. 181, 186–189 (2008).

    CAS  PubMed  Google Scholar 

  • 59.

    Amezcua Vesely, M. C. et al. Effector TH17 cells give rise to long-lived trm cells that are essential for an immediate response against bacterial infection. Cell 178, 1176–1188 (2019). e1115.

    CAS  PubMed  Google Scholar 

  • 60.

    Levy, R. et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc. Natl Acad. Sci. USA 113, E8277–E8285 (2016).

    CAS  PubMed  Google Scholar 

  • 61.

    Auderset, F. et al. Reactivating immunity primed by acellular pertussis vaccines in the absence of circulating antibodies: enhanced bacterial control by TLR9 rather than TLR4 agonist-including formulation. Front Immunol. 10, 1520 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    da Silva Antunes, R. et al. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J. Clin. Invest. 128, 3853–3865 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Allen, A. C. et al. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal Immunol. 11, 1763–1776 (2018).

    CAS  PubMed  Google Scholar 

  • 64.

    Wilk, M. M. et al. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg. Microbes Infect. 8, 169–185 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Rakshit, S. et al. BCG revaccination boosts adaptive polyfunctional Th1/Th17 and innate effectors in IGRA+ and IGRA- Indian adults. JCI Insight 4, https://doi.org/10.1172/jci.insight.130540 (2019).

  • 66.

    Nemes, E. et al. Prevention of M. tuberculosis Infection with H4:IC31 vaccine or BCG revaccination. N. Engl. J. Med. 379, 138–149 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Lee, C. J. Quality control of polyvalent pneumococcal polysaccharide-protein conjugate vaccine by nephelometry. Biologicals 30, 97–103 (2002).

    CAS  PubMed  Google Scholar 

  • 68.

    Lees, A., Nelson, B. L. & Mond, J. J. Activation of soluble polysaccharides with 1-cyano-4-dimethylaminopyridinium tetrafluoroborate for use in protein-polysaccharide conjugate vaccines and immunological reagents. Vaccine 14, 190–198 (1996).

    CAS  PubMed  Google Scholar 

  • 69.

    Gavi The vaccine Alliance. Pneumonia vaccine saves 500,000 lives in world’s poorest countries. https://www.gavi.org/pneumonia-vaccine-saves-500000-lives-in-world-s-poorest-countries (2017).

  • 70.

    Weinberger, D. M., Malley, R. & Lipsitch, M. Serotype replacement in disease after pneumococcal vaccination. Lancet 378, 1962–1973 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 71.

    Bijlsma, M. W. et al. Epidemiology of invasive meningococcal disease in the Netherlands, 1960-2012: an analysis of national surveillance data. Lancet Infect. Dis. 14, 805–812 (2014).

    PubMed  Google Scholar 

  • 72.

    Adam, H. J. et al. Changing epidemiology of invasive Haemophilus influenzae in Ontario, Canada: evidence for herd effects and strain replacement due to Hib vaccination. Vaccine 28, 4073–4078 (2010).

    CAS  PubMed  Google Scholar 

  • 73.

    Wyres, K. L. et al. Pneumococcal capsular switching: a historical perspective. J. Infect. Dis. 207, 439–449 (2013).

    PubMed  Google Scholar 

  • 74.

    Alicino, C. et al. The impact of 10-valent and 13-valent pneumococcal conjugate vaccines on hospitalization for pneumonia in children: a systematic review and meta-analysis. Vaccine 35, 5776–5785 (2017).

    PubMed  Google Scholar 

  • 75.

    Ewald, H. et al. The clinical effectiveness of pneumococcal conjugate vaccines: a systematic review and meta-analysis of randomized controlled trials. Dtsch Arztebl Int 113, 139–146 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 76.

    Denoël, P. et al. A protein-based pneumococcal vaccine protects rhesus macaques from pneumonia after experimental infection with Streptococcus pneumoniae. Vaccine 29, 5495–5501 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 77.

    Feldman, M. F. et al. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl Acad. Sci. USA 102, 3016–3021 (2005).

    CAS  PubMed  Google Scholar 

  • 78.

    Ihssen, J. et al. Production of glycoprotein vaccines in Escherichia coli. Microb. Cell Factories 9, 61 (2010).

    Google Scholar 

  • 79.

    Verez-Bencomo, V. et al. A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type B. Science 305, 522–525 (2004).

    CAS  PubMed  Google Scholar 

  • 80.

    Zhang, F., Lu, Y. J. & Malley, R. Multiple antigen-presenting system (MAPS) to induce comprehensive B- and T-cell immunity. Proc. Natl Acad. Sci. USA 110, 13564–13569 (2013).

    CAS  PubMed  Google Scholar 

  • 81.

    Sun, X., Stefanetti, G., Berti, F. & Kasper, D. L. Polysaccharide structure dictates mechanism of adaptive immune response to glycoconjugate vaccines. Proc. Natl Acad. Sci. USA 116, 193–198 (2019).

    CAS  PubMed  Google Scholar 

  • 82.

    Storsaeter, J. & Wolter, J. Is there a need for a new generation of vaccines against pertussis? Expert Opin. Emerg. Drugs 11, 195–205 (2006).

    CAS  PubMed  Google Scholar 

  • 83.

    Meade, B. D., Plotkin, S. A. & Locht, C. Possible options for new pertussis vaccines. J. Infect. Dis. 209(Suppl 1), S24–S27 (2014).

    PubMed  Google Scholar 

  • 84.

    Ross, P. J. et al. Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog. 9, e1003264 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Decker, M. D., Greenberg, D. P., Johnson, D. R. & Pool, V. Randomized study of immune responses to two Tdap vaccines among adolescents primed with DTaP and comparison with results among adolescents primed with DTwP. Vaccine, https://doi.org/10.1016/j.vaccine.2019.07.015 (2019).

  • 86.

    Lambert, E. E., Buisman, A. M. & van Els, C. Superior B. pertussis Specific CD4+ T-Cell Immunity Imprinted by Natural Infection. Adv. Exp. Med. Biol. https://doi.org/10.1007/5584_2019_405 (2019).

  • 87.

    Ibsen, P. H. The effect of formaldehyde, hydrogen peroxide and genetic detoxification of pertussis toxin on epitope recognition by murine monoclonal antibodies. Vaccine 14, 359–368 (1996).

    CAS  PubMed  Google Scholar 

  • 88.

    Nasso, M. et al. Genetically detoxified pertussis toxin induces Th1/Th17 immune response through MAPKs and IL-10-dependent mechanisms. J. Immunol. 183, 1892–1899 (2009).

    CAS  PubMed  Google Scholar 

  • 89.

    Pizza, M. et al. Mutants of pertussis toxin suitable for vaccine development. Science 246, 497–500 (1989).

    CAS  PubMed  Google Scholar 

  • 90.

    Seubert, A., D’Oro, U., Scarselli, M. & Pizza, M. Genetically detoxified pertussis toxin (PT-9K/129G): implications for immunization and vaccines. Expert Rev. Vaccines 13, 1191–1204 (2014).

    CAS  PubMed  Google Scholar 

  • 91.

    Greco, D. et al. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. Progetto Pertosse Working Group. N. Engl. J. Med. 334, 341–348 (1996).

    CAS  PubMed  Google Scholar 

  • 92.

    Guiso, N., Rocancourt, M., Szatanik, M. & Alonso, J. M. Bordetella adenylate cyclase is a virulence associated factor and an immunoprotective antigen. Micro. Pathog. 7, 373–380 (1989).

    CAS  Google Scholar 

  • 93.

    Guiso, N. Bordetella adenylate cyclase-hemolysin toxins. Toxins (Basel) 9, https://doi.org/10.3390/toxins9090277 (2017).

  • 94.

    Nigrovic, L. E. & Thompson, K. M. The Lyme vaccine: a cautionary tale. Epidemiol. Infect. 135, 1–8 (2007).

    CAS  PubMed  Google Scholar 

  • 95.

    Plotkin, S. A. Correcting a public health fiasco: the need for a new vaccine against Lyme disease. Clin. Infect. Dis. 52(Suppl 3), s271–s275 (2011).

    PubMed  Google Scholar 

  • 96.

    Poolman, J. T. & Richmond, P. Multivalent Meningococcal Serogroup B vaccines: challenges in predicting protection and measuring effectiveness. Expert Rev. Vaccines. 14, 1277–1287 (2015).

    CAS  PubMed  Google Scholar 

  • 97.

    Ladhani, S. N. et al. Vaccination of Infants with Meningococcal Group B vaccine (4CMenB) in England. N. Engl. J. Med. 382, 309–317 (2020).

    CAS  PubMed  Google Scholar 

  • 98.

    Tait, D. R. et al. Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med. 381, 2429–2439 (2019).

    CAS  PubMed  Google Scholar 

  • 99.

    Lai, R., Afkhami, S., Haddadi, S., Jeyanathan, M. & Xing, Z. Mucosal immunity and novel tuberculosis vaccine strategies: route of immunisation-determined T-cell homing to restricted lung mucosal compartments. Eur. Respir. Rev. 24, 356–360 (2015).

    PubMed  Google Scholar 

  • 100.

    Li, M. et al. Mucosal vaccines: strategies and challenges. Immunol. Lett. 217, 116–125 (2020).

    CAS  PubMed  Google Scholar 

  • 101.

    Redi, D., Raffaelli, C. S., Rossetti, B., De Luca, A. & Montagnani, F. Staphylococcus aureus vaccine preclinical and clinical development: current state of the art. N. Microbiol. 41, 208–213 (2018).

    CAS  Google Scholar 

  • 102.

    RTT News Dec 21 2018. Pfizer Discontinues Phase 2b STRIVE Clinical Trial Due To Futility [cited 2019 Feb 28]. https://markets.businessinsider.com/news/stocks/pfizer-discontinues-phase-2b-strive-clinical-trial-due-to-futility-1027827494.

  • 103.

    Guerra, F. E., Borgogna, T. R., Patel, D. M., Sward, E. W. & Voyich, J. M. Epic immune battles of history: neutrophils vs. Staphylococcus aureus. Front Cell Infect. Microbiol 7, 286 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 104.

    Fowler, V. G. et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 309, 1368–1378 (2013).

    CAS  PubMed  Google Scholar 

  • 105.

    Fattom, A. et al. Efficacy profile of a bivalent Staphylococcus aureus glycoconjugated vaccine in adults on hemodialysis: phase III randomized study. Hum. Vaccin Immunother. 11, 632–641 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 106.

    Broker, B. M., Mrochen, D. & Peton, V. The T cell response to Staphylococcus aureus. Pathogens 5, https://doi.org/10.3390/pathogens5010031 (2016).

  • 107.

    Miller, L. S., Fowler, V. G., Shukla, S. K., Rose, W. E. & Proctor, R. A. Development of a vaccine against Staphylococcus aureus invasive infections: evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol. Rev. 44, 123–153 (2020).

    PubMed  Google Scholar 

  • 108.

    Ramos-Sevillano, E., Ercoli, G. & Brown, J. S. Mechanisms of naturally acquired immunity to Streptococcus pneumoniae. Front Immunol. 10, 358 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 109.

    Garde, D. Genocea halts its antibiotic vaccine program after a Phase II failure. FierceBiotech https://www.fiercebiotech.com/r-d/genocea-halts-its-antibiotic-vaccine-program-after-a-phase-ii-failure (2015).

  • 110.

    Odutola, A. et al. Efficacy of a novel, protein-based pneumococcal vaccine against nasopharyngeal carriage of Streptococcus pneumoniae in infants: A phase 2, randomized, controlled, observer-blind study. Vaccine 35, 2531–2542 (2017).

    CAS  PubMed  Google Scholar 

  • 111.

    Delahaye, J. L. et al. Cutting edge: bacillus calmette-guerin-induced t cells shape mycobacterium tuberculosis infection before reducing the bacterial burden. J. Immunol. https://doi.org/10.4049/jimmunol.1900108 (2019).

  • 112.

    Joosten, S. A. et al. Mycobacterial growth inhibition is associated with trained innate immunity. J. Clin. Invest. 128, 1837–1851 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 113.

    Covian, C. et al. BCG-induced cross-protection and development of trained immunity: implication for vaccine design. Front Immunol. 10, 2806 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 114.

    Fine, P. E. Variation in protection by BCG: implications of and for heterologous immunity. Lancet (London, England) 346, 1339–1345 (1995).

    CAS  Google Scholar 

  • 115.

    Trunz, B. B., Fine, P. & Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367, 1173–1180 (2006).

    PubMed  Google Scholar 

  • 116.

    Tubo, N. J. & Jenkins, M. K. CD4+ T cells: guardians of the phagosome. Clin. Microbiol. Rev. 27, 200–213 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 117.

    Andersen, P. & Scriba, T. J. Moving tuberculosis vaccines from theory to practice. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-019-0174-z (2019).

  • 118.

    Rodo, M. J. et al. A comparison of antigen-specific T cell responses induced by six novel tuberculosis vaccine candidates. PLoS Pathog. 15, e1007643 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 119.

    Sheehan, S. et al. A phase I, open-label trial, evaluating the safety and immunogenicity of candidate tuberculosis vaccines AERAS-402 and MVA85A, administered by prime-boost regime in BCG-vaccinated healthy adults. PLoS ONE 10, e0141687 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 120.

    Van Der Meeren, O. et al. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med. 379, 1621–1634 (2018).

    Google Scholar 

  • 121.

    Suliman, S. et al. Dose optimization of H56:IC31 vaccine for tuberculosis-endemic populations. a double-blind, placebo-controlled, dose-selection trial. Am. J. Respir. Crit. Care Med 199, 220–231 (2019).

    CAS  PubMed  Google Scholar 

  • 122.

    Schrager, L. K., Harris, R. C. & Vekemans, J. Research and development of new tuberculosis vaccines: a review. F1000Res. 7, 1732 (2018).

    PubMed  Google Scholar 

  • 123.

    Hansen, S. G. et al. Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat. Med. 24, 130–143 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 124.

    Griffiths, K. L., Villarreal, D. O., Weiner, D. B. & Khader, S. A. A novel multivalent tuberculosis vaccine confers protection in a mouse model of tuberculosis. Hum. Vaccin Immunother. 12, 2649–2653 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 125.

    Hoelzer, K. et al. Vaccines as alternatives to antibiotics for food producing animals. Part 2: new approaches and potential solutions. Vet. Res. 49, 70 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 126.

    Williamson, D. A., Lim, A., Wiles, S., Roberts, S. A. & Freeman, J. T. Population-based incidence and comparative demographics of community-associated and healthcare-associated Escherichia coli bloodstream infection in Auckland, New Zealand, 2005-2011. BMC Infect. Dis. 13, 385 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 127.

    Turnidge, J. D. et al. Staphylococcus aureus bacteraemia: a major cause of mortality in Australia and New Zealand. Med. J. Aust. 191, 368–373 (2009).

    PubMed  Google Scholar 

  • 128.

    Jain, S. et al. Community-acquired pneumonia requiring hospitalization among U.S. Adults. N. Engl. J. Med. 373, 415–427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 129.

    Prymula, R. et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet 367, 740–748 (2006).

    CAS  PubMed  Google Scholar 

  • 130.

    Kilpi, T. et al. Protective efficacy of a second pneumococcal conjugate vaccine against pneumococcal acute otitis media in infants and children: randomized, controlled trial of a 7-valent pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine in 1666 children. Clin. Infect. Dis. 37, 1155–1164 (2003).

    CAS  PubMed  Google Scholar 

  • 131.

    Eskola, J. et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med. 344, 403–409 (2001).

    CAS  PubMed  Google Scholar 

  • 132.

    Black, S. et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr. Infect. Dis. J. 19, 187–195 (2000).

    CAS  PubMed  Google Scholar 

  • 133.

    Valeri, M. & Raffatellu, M. Cytokines IL-17 and IL-22 in the host response to infection. Pathog. Dis. 74, https://doi.org/10.1093/femspd/ftw111 (2016).

  • 134.

    Kuwabara, T., Ishikawa, F., Kondo, M. & Kakiuchi, T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm. 2017, 3908061 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Source