• 1.

    Koch, K. G. et al. Evaluation of tetraploid switchgrass (Poales: Poaceae) populations for host suitability and differential resistance to four cereal aphids. J. Econ. Entomol. 107, 424–431 (2014).

    PubMed  Google Scholar 

  • 2.

    Koch, K. G. et al. Evaluation of greenbug and yellow sugarcane aphid feeding behavior on resistant and susceptible switchgrass cultivars. BioEnergy Res. 11, 480–490 (2018).

    CAS  Google Scholar 

  • 3.

    Donze-Reiner, T. et al. Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC Plant Biol. 17, 46–46 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Smith, M. Plant Resistance to Arthropods: Molecular and Conventional Approaches (Springer, Dordrecht, 2005).

    Google Scholar 

  • 5.

    Painter, R. H. Insect Resistance in Crop Plants (Macmillan, New York, 1951).

    Google Scholar 

  • 6.

    Smith, C. M. & Chuang, W.-P. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Manag. Sci. 70, 528–540 (2014).

    PubMed  Google Scholar 

  • 7.

    Koch, K. G. et al. Characterization of greenbug feeding behavior and aphid (Hemiptera: Aphididae) host preference in relation to resistant and susceptible tetraploid switchgrass populations. BioEnergy Res. 8, 165–174 (2015).

    Google Scholar 

  • 8.

    Koch, K. G., Bradshaw, J. D., Heng-Moss, T. M. & Sarath, G. Categories of resistance to greenbug and yellow sugarcane aphid (Hemiptera: Aphididae) in three tetraploid switchgrass populations. BioEnergy Res. 7, 909–918 (2014).

    CAS  Google Scholar 

  • 9.

    Foyer, C. H., Verrall, S. R. & Hancock, R. D. Systematic analysis of phloem-feeding insect-induced transcriptional reprogramming in Arabidopsis highlights common features and reveals distinct responses to specialist and generalist insects. J. Exp. Bot. 66, 495–512 (2014).

    PubMed  Google Scholar 

  • 10.

    Kerchev, P. I., Fenton, B., Foyer, C. H. & Hancock, R. D. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ. 35, 441–453 (2012).

    CAS  PubMed  Google Scholar 

  • 11.

    Koch, K. G., Chapman, K., Louis, J., Heng-Moss, T. & Sarath, G. Plant tolerance: a unique approach to control hemipteran pests. Front. Plant Sci. 7, 1363–1363 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Baxter, A., Mittler, R. & Suzuki, N. ROS as key players in plant stress signalling. J. Exp. Bot. 65, 1229–1240 (2013).

    PubMed  Google Scholar 

  • 13.

    Heng-Moss, T., Macedo, T., Franzen-Castle, L., Baxendale, F. & Higley, L. Physiological responses of resistant and susceptible buffalograsses to Blissus occiduus (Hemiptera: Blissidae) feeding. J. Econ. Entomol. 99, 222–228 (2006).

    CAS  PubMed  Google Scholar 

  • 14.

    Ramm, C. et al. Transcriptional profiling of resistant and susceptible buffalograsses in response to Blissus occiduus (Hemiptera: Blissidae) feeding. J. Econ. Entomol. 108, 1354–1362 (2015).

    CAS  PubMed  Google Scholar 

  • 15.

    Saathoff, A. et al. Towards uncovering the roles of switchgrass peroxidases in plant processes. Front. Plant Sci. 4, 202 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Muneer, S., Jeong, H. K., Park, Y. G. & Jeong, B. R. Proteomic analysis of aphid-resistant and -sensitive rose (Rosa hybrida) cultivars at two developmental stages. Proteomes 6, 25 (2018).

    PubMed Central  Google Scholar 

  • 17.

    Truong, D.-H. et al. Proteomic analysis of Arabidopsis thaliana (L.) Heynh responses to a generalist sucking pest (Myzus persicae Sulzer). Plant Biol. 17, 1210–1217 (2015).

    CAS  PubMed  Google Scholar 

  • 18.

    Duceppe, M.-O., Cloutier, C. & Michaud, D. Wounding, insect chewing and phloem sap feeding differentially alter the leaf proteome of potato, Solanum tuberosum L.. Proteome Sci 10, 73–73 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Zogli, P., Pingault, L., Grover, S. Louis, J. Ento(o)mics: the intersection of “omic” approaches to decipher plant defense against sap-sucking insect pests. Curr. Opin. Plant Biol. 56, 153–161 (2020)

    CAS  PubMed  Google Scholar 

  • 20.

    Guan, W. et al. Proteomic analysis shows that stress response proteins are significantly up-regulated in resistant diploid wheat (Triticum monococcum) in response to attack by the grain aphid (Sitobion avenae). Mol. Breed. 35, 57–57 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Coppola, V. et al. Transcriptomic and proteomic analysis of a compatible tomato–aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genom. 14, 515–515 (2013).

    CAS  Google Scholar 

  • 22.

    Wu, X. et al. Proteomic analysis by iTRAQ-PRM provides integrated insight into mechanisms of resistance in pepper to Bemisia tabaci (Gennadius). BMC Plant Biol. 19, 270 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Zhang, X. et al. Proteomic analysis of the rice (Oryza officinalis) provides clues on molecular tagging of proteins for brown planthopper resistance. BMC Plant Biol. 19, 30–30 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Castano-Duque, L. & Luthe, D. S. Protein networks reveal organ-specific defense strategies in maize in response to an aboveground herbivore. Arthropod Plant Interact. 12, 147–175 (2018).

    Google Scholar 

  • 25.

    Lee, J. & Koh, H.-J. A label-free quantitative shotgun proteomics analysis of rice grain development. Proteome Sci. 9, 61 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Lin, W.-D., Chen, Y.-C., Ho, J.-M. & Hsiao, C.-D. GOBU: toward an integration interface for biological objects. J. Inf. Sci. Eng. 22, 19–29 (2006).

    Google Scholar 

  • 27.

    Sharma, E., Anand, G. & Kapoor, R. Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Ann. Bot. 119, 791–801 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Pré, M. et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 147, 1347 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Choi, H. W. et al. A role for a menthone reductase in resistance against microbial pathogens in plants. Plant Physiol. 148, 383 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Alazem, M., Lin, K.-Y. & Lin, N.-S. The abscisic acid pathway has multifaceted effects on the accumulation of bamboo mosaic virus. MPMI 27, 177–189 (2013).

    Google Scholar 

  • 31.

    Park, C.-J., Caddell, D. F. & Ronald, P. C. Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling. Front. Plant Sci. 3, 177–177 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Jagodzik, P., Tajdel-Zielinska, M., Ciesla, A., Marczak, M. & Ludwikow, A. Mitogen-activated protein kinase cascades in plant hormone signaling. Front. Plant Sci. 9, 1387 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Muchlinski, A. et al. Biosynthesis and emission of stress-induced volatile terpenes in roots and leaves of switchgrass (Panicum virgatum L.). Front. Plant Sci. 10, 1144 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Chen, J.-H. et al. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 158, 340 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Wang, X. Protein and proteome atlas for plants under stresses: new highlights and ways for integrated omics in post-genomics era. Int. J. Mol. Sci. 20, 5222 (2019).

    CAS  PubMed Central  Google Scholar 

  • 36.

    Liu, Y. et al. Proteomics: a powerful tool to study plant responses to biotic stress. Plant Methods 15, 135 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Dong, Y. et al. Comparative proteomic analysis of susceptible and resistant rice plants during early infestation by small brown planthopper. Front. Plant Sci. 8, 1744–1744 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Ulappa, A. C. et al. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore. J. Mammal 95, 834–842 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Zaynab, M. et al. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124, 198–202 (2018).

    CAS  PubMed  Google Scholar 

  • 40.

    Hansen, B. G. et al. A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis. Plant Physiol. 148, 2096 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Ford, K. A. et al. Neonicotinoid insecticides induce salicylate-associated plant defense responses. Proc. Natl. Acad. Sci. USA 107, 17527–17532 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    Tzin, V. et al. Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol. 169, 1727–1743 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Zhou, S., Richter, A. & Jander, G. Beyond defense: multiple functions of benzoxazinoids in maize metabolism. Plant Cell Physiol. 59, 1528–1537 (2018).

    CAS  PubMed  Google Scholar 

  • 44.

    Yang, C. et al. Lignin metabolism involves Botrytis cinerea BcGs1– induced defense response in tomato. BMC Plant Biol. 18, 103 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Glauser, G. et al. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J. Biol. Chem. 283, 16400–16407 (2008).

    CAS  PubMed  Google Scholar 

  • 46.

    Zhang, L., Zhang, F., Melotto, M., Yao, J. & He, S. Y. Jasmonate signaling and manipulation by pathogens and insects. J. Exp. Bot. 68, 1371–1385 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Thivierge, K. et al. Caterpillar- and salivary-specific modification of plant proteins. J. Proteome Res. 9, 5887–5895 (2010).

    CAS  PubMed  Google Scholar 

  • 48.

    Nalam, V. J., Keeretaweep, J., Sarowar, S. & Shah, J. Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage. Plant Cell 24, 1643–1653 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Maffei, M. E., Mithöfer, A. & Boland, W. Before gene expression: early events in plant–insect interaction. Trends Plant Sci. 12, 310–316 (2007).

    CAS  PubMed  Google Scholar 

  • 50.

    Vincent, T. R. et al. Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. Plant Cell 29, 1460–1479 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Sun, M., Voorrips, R. E. & Vosman, B. Aphid populations showing differential levels of virulence on Capsicum accessions. Insect Sci. 27, 336–348 (2020).

    CAS  PubMed  Google Scholar 

  • 52.

    Kehr, J. Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. J. Exp. Bot. 57, 767–774 (2006).

    CAS  PubMed  Google Scholar 

  • 53.

    Peng, H.-C. & Walker, G. P. Sieve element occlusion provides resistance against Aphis gossypii in TGR-1551 melons. Insect Sci. 27, 33–48 (2020).

    CAS  PubMed  Google Scholar 

  • 54.

    Sun, M., Voorrips, R. E., Steenhuis-Broers, G., Van’t Westende, W. & Vosman, B. Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC Plant Biol. 18, 138–138 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Moloi, M. J. & van der Westhuizen, A. J. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J. Plant Physiol. 163, 1118–1125 (2006).

    CAS  PubMed  Google Scholar 

  • 56.

    Park, S.-J., Huang, Y. & Ayoubi, P. Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223, 932–947 (2006).

    CAS  PubMed  Google Scholar 

  • 57.

    Torres, M. A., Dangl, J. L. & Jones, J. D. G. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99, 517–522 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 58.

    Bindschedler, L. V. et al. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 47, 851–863 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Hu, X. et al. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol. 133, 170 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Mhamdi, A. et al. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot. 61, 4197–4220 (2010).

    CAS  PubMed  Google Scholar 

  • 61.

    de Carvalho-Oliveira, R. A. et al. Analysis of Arabidopsis thaliana redox gene network indicates evolutionary expansion of class iii peroxidase in plants. Sci. Rep. 9, 15741 (2019).

    ADS  Google Scholar 

  • 62.

    Dreyer, B. H. & Schippers, J. H. M. Copper-zinc superoxide dismutases in plants: evolution, enzymatic properties, and beyond. In Annual Plant Reviews online 933–968 (American Cancer Society, 2019). https://doi.org/10.1002/9781119312994.apr0705.

  • 63.

    Noctor, G. & Foyer, C. H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Biol. 49, 249–279 (1998).

    CAS  Google Scholar 

  • 64.

    Almagro, L. et al. Class III peroxidases in plant defence reactions. J. Exp. Bot. 60, 377–390 (2009).

    CAS  PubMed  Google Scholar 

  • 65.

    Ye, Z. et al. Comparative proteomics of root apex and root elongation zones provides insights into molecular mechanisms for drought stress and recovery adjustment in switchgrass. Proteomes 8, 3 (2020).

    CAS  PubMed Central  Google Scholar 

  • 66.

    Gaquerel, E., Steppuhn, A. & Baldwin, I. T. Nicotiana attenuata α-DIOXYGENASE1 through its production of 2-hydroxylinolenic acid is required for intact plant defense expression against attack from Manduca sexta larvae. New Phytol. 196, 574–585 (2012).

    CAS  PubMed  Google Scholar 

  • 67.

    Avila, C. A., Arevalo-Soliz, L. M., Lorence, A. & Goggin, F. L. Expression of α-DIOXYGENASE 1 in tomato and Arabidopsis contributes to plant defenses against aphids. MPMI 26, 977–986 (2013).

    CAS  PubMed  Google Scholar 

  • 68.

    Pan, X. et al. iTRAQ Protein profile analysis of tomato green-ripe mutant reveals new aspects critical for fruit ripening. J. Proteome Res. 13, 1979–1993 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 69.

    Misas-Villamil, J. C., van der Hoorn, R. A. L. & Doehlemann, G. Papain-like cysteine proteases as hubs in plant immunity. New Phytol. 212, 902–907 (2016).

    CAS  PubMed  Google Scholar 

  • 70.

    Louis, J. et al. Ethylene contributes to maize insect resistance1-mediated maize defense against the phloem sap-sucking corn leaf aphid. Plant Physiol. 169, 313 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Lee, M. W., Jelenska, J. & Greenberg, J. T. Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. Plant J. 54, 452–465 (2008).

    CAS  PubMed  Google Scholar 

  • 72.

    Toruño, T. Y., Shen, M., Coaker, G. & Mackey, D. Regulated disorder: posttranslational modifications control the RIN4 plant immune signaling hub. MPMI 32, 56–64 (2018).

    PubMed  Google Scholar 

  • 73.

    Redditt, T. J. et al. AvrRpm1 functions as an ADP-ribosyl transferase to modify NOI domain-containing proteins, including Arabidopsis and soybean RPM1-interacting protein4. Plant Cell 31, 2664 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Wang, Z. et al. A family of NAI2-interacting proteins in the biogenesis of the ER body and related structures. Plant Physiol. 180, 212 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Nakazaki, A. et al. Leaf endoplasmic reticulum bodies identified in Arabidopsis rosette leaves are involved in defense against herbivory. Plant Physiol. 179, 1515 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Nakano, R. T. et al. PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana. Plant J. 89, 204–220 (2017).

    CAS  PubMed  Google Scholar 

  • 77.

    Zhou, S., Lou, Y.-R., Tzin, V. & Jander, G. Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol. 169, 1488–1498 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Wang, W.-M., Liu, P.-Q., Xu, Y.-J. & Xiao, S. Protein trafficking during plant innate immunity. J. Integr. Plant Biol. 58, 284–298 (2016).

    CAS  PubMed  Google Scholar 

  • 79.

    Lorenzo, O., Chico, J. M., Sánchez-Serrano, J. J. & Solano, R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16, 1938–1950 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 80.

    Ogawa, S. et al. OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Sci. Rep. 7, 40175 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Hasegawa, M. et al. Analysis on blast fungus-responsive characters of a flavonoid phytoalexin sakuranetin; accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules 19, 11404 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 82.

    Moore, K. et al. Describing and quantifying growth stages of perennial forage grasses. Agron. J. 83, 1073–1077 (1991).

    Google Scholar 

  • 83.

    Alvarez, S., Hicks, L. M. & Pandey, S. ABA-dependent and-independent G-protein signaling in Arabidopsis roots revealed through an iTRAQ proteomics approach. J. Proteome Res. 10, 3107–3122 (2011).

    CAS  PubMed  Google Scholar 

  • 84.

    Alvarez, S., Roy Choudhury, S. & Pandey, S. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J. Proteome Res. 13, 1688–1701 (2014).

    CAS  PubMed  Google Scholar 

  • 85.

    Alvarez, S., Roy Choudhury, S., Sivagnanam, K., Hicks, L. M. & Pandey, S. Quantitative proteomics analysis of Camelina sativa seeds overexpressing the AGG3 gene to identify the proteomic basis of increased yield and stress tolerance. J. Proteome Res. 14, 2606–2616 (2015).

    CAS  PubMed  Google Scholar 

  • 86.

    Kettenbach, A. N. & Gerber, S. A. Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: Application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal. Chem. 83, 7635–7644 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 87.

    Taus, T. et al. Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10, 5354–5362 (2011).

    CAS  PubMed  Google Scholar 

  • Source