• 1.

    Gilbert, R. J. C., Bayley, H. & Anderluh, G. Membrane pores: from structure and assembly, to medicine and technology. Phil. Trans. R. Soc. Lond. B 372, 20160208 (2017).

    Article  Google Scholar 

  • 2.

    Eisenstein, M. An ace in the hole for DNA sequencing. Nature 550, 285–288 (2017).

    ADS  Article  Google Scholar 

  • 3.

    Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Lear, J. D., Wasserman, Z. R. & DeGrado, W. F. Synthetic amphiphilic peptide models for protein ion channels. Science 240, 1177–1181 (1988).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Akerfeldt, K. S., Lear, J. D., Wasserman, Z. R., Chung, L. A. & DeGrado, W. F. Synthetic peptides as models for ion channel proteins. Acc. Chem. Res. 26, 191–197 (1993).

    CAS  Article  Google Scholar 

  • 7.

    Joh, N. H. et al. De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science 346, 1520–1524 (2014).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Lu, P. et al. Accurate computational design of multipass transmembrane proteins. Science 359, 1042–1046 (2018).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Mahendran, K. R. et al. A monodisperse transmembrane α-helical peptide barrel. Nat. Chem. 9, 411–419 (2017).

    CAS  Article  Google Scholar 

  • 10.

    Mravic, M. et al. Packing of apolar side chains enables accurate design of highly stable membrane proteins. Science 363, 1418–1423 (2019).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Joh, N. H., Grigoryan, G., Wu, Y. & DeGrado, W. F. Design of self-assembling transmembrane helical bundles to elucidate principles required for membrane protein folding and ion transport. Phil. Trans. R. Soc. Lond. B 372, 20160214 (2017).

    Article  Google Scholar 

  • 12.

    Niitsu, A., Heal, J. W., Fauland, K., Thomson, A. R. & Woolfson, D. N. Membrane-spanning α-helical barrels as tractable protein-design targets. Phil. Trans. R. Soc. Lond. B 372, 20160213 (2017).

    Article  Google Scholar 

  • 13.

    Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Rhys, G. G. et al. Maintaining and breaking symmetry in homomeric coiled-coil assemblies. Nat. Commun. 9, 4132 (2018).

    ADS  Article  Google Scholar 

  • 15.

    Crick, F. H. C. The Fourier transform of a coiled-coil. Acta Crystallogr. 6, 685–689 (1953).

    CAS  Article  Google Scholar 

  • 16.

    Grigoryan, G. & Degrado, W. F. Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405, 1079–1100 (2011).

    CAS  Article  Google Scholar 

  • 17.

    Huang, P. S. et al. High thermodynamic stability of parametrically designed helical bundles. Science 346, 481–485 (2014).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Boyken, S. E. et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352, 680–687 (2016).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Das, R. et al. Simultaneous prediction of protein folding and docking at high resolution. Proc. Natl Acad. Sci. USA 106, 18978–18983 (2009).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    CAS  Article  Google Scholar 

  • 21.

    Hou, X., Pedi, L., Diver, M. M. & Long, S. B. Crystal structure of the calcium release-activated calcium channel Orai. Science 338, 1308–1313 (2012).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Hou, X., Burstein, S. R. & Long, S. B. Structures reveal opening of the store-operated calcium channel Orai. eLife 7, e36758 (2018).

    Article  Google Scholar 

  • 23.

    Dynes, J. L., Amcheslavsky, A. & Cahalan, M. D. Genetically targeted single-channel optical recording reveals multiple Orai1 gating states and oscillations in calcium influx. Proc. Natl Acad. Sci. USA 113, 440–445 (2016).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011).

    CAS  Article  Google Scholar 

  • 26.

    Tang, L. et al. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505, 56–61 (2014).

    ADS  Article  Google Scholar 

  • 27.

    Pan, X. et al. Structure of the human voltage-gated sodium channel NaV1.4 in complex with β1. Science 362, eaau2486 (2018).

    Article  Google Scholar 

  • 28.

    Fujii, S. et al. Liposome display for in vitro selection and evolution of membrane proteins. Nat. Protoc. 9, 1578–1591 (2014).

    CAS  Article  Google Scholar 

  • 29.

    Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y. & Yomo, T. In vitro evolution of α-hemolysin using a liposome display. Proc. Natl Acad. Sci. USA 110, 16796–16801 (2013).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Dwidar, M. et al. Programmable artificial cells using histamine-responsive synthetic riboswitch. J. Am. Chem. Soc. 141, 11103–11114 (2019).

    CAS  Article  Google Scholar 

  • 31.

    Sim, A. Y. L., Lipfert, J., Herschlag, D. & Doniach, S. Salt dependence of the radius of gyration and flexibility of single-stranded DNA in solution probed by small-angle X-ray scattering. Phys. Rev. E 86, 021901 (2012).

    ADS  Article  Google Scholar 

  • 32.

    Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1865 (1996).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  Article  Google Scholar 

  • Source