• 1.

    Li, L., Liu, X., Pal, S., Wang, S. & Giannelis, E. P. Extreme ultraviolet resist materials for sub-7 nm patterning. Chem. Soc. Rev. 46, 4855–4866 (2017).

    Google Scholar 

  • 2.

    Gu, M., Li, X. & Cao, Y. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl. 3, e177 (2014).

    CAS  Google Scholar 

  • 3.

    Kim, J. et al. A stacked memory device on logic 3D technology for ultra-high-density data storage. Nanotechnology 22, 254006 (2011).

    Google Scholar 

  • 4.

    Vettiger, P. et al. The “Millipede”—more than one thousand tips for future AFM data storage. IBM J. Res. Dev. 44, 323–340 (2000).

    CAS  Google Scholar 

  • 5.

    Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).

    Google Scholar 

  • 6.

    Mastel, S. et al. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photon. 5, 3372–3378 (2018).

    Google Scholar 

  • 7.

    Wagner, M. & Mueller, T. High-resolution nanochemical mapping of soft materials. Microsc. Today 24, 44–51 (2016).

    CAS  Google Scholar 

  • 8.

    Tseng, A. A. Recent developments in nanofabrication using scanning near-field optical microscope lithography. Opt. Laser Technol. 39, 514–526 (2007).

    CAS  Google Scholar 

  • 9.

    Quidant, R. & Girard, C. Surface-plasmon-based optical manipulation. Laser Photon. Rev. 2, 47–57 (2008).

    CAS  Google Scholar 

  • 10.

    Righini, M., Volpe, G., Girard, C., Petrov, D. & Quidant, R. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 100, 217–220 (2008).

    Google Scholar 

  • 11.

    Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    CAS  Google Scholar 

  • 12.

    Atie, E. M. et al. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a SNOM fiber tip. Appl. Phys. Lett. 106, 151104 (2015).

    Google Scholar 

  • 13.

    Kravtsov, V., Ulbricht, R., Atkin, J. M. & Raschke, M. B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 11, 459–464 (2016).

    Google Scholar 

  • 14.

    Dick, S. et al. Surface-enhanced Raman spectroscopy as a probe of the surface chemistry of nanostructured materials. Adv. Mater. 28, 5705–5711 (2016).

    CAS  Google Scholar 

  • 15.

    Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

    Google Scholar 

  • 16.

    Zhang, W. & Chen, Y. Visibility of subsurface nanostructures in scattering-type scanning near-field optical microscopy imaging. Opt. Express 28, 6696–6707 (2020).

    Google Scholar 

  • 17.

    Ohtsu, M., Kobayashi, K., Kawazoe, T., Sangu, S. & Yatsui, T. Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002).

    CAS  Google Scholar 

  • 18.

    Srituravanich, W. et al. Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol. 3, 733–737 (2008).

    CAS  Google Scholar 

  • 19.

    Pan, L. et al. Maskless plasmonic lithography at 22 nm resolution. Sci. Rep. 1, 00175 (2011).

    CAS  Google Scholar 

  • 20.

    Alkaisi, M. M., Blaikie, R. J. & Mcnab, S. J. Nanolithography in the evanescent near field. Adv. Mater. 13, 877–887 (2001).

    CAS  Google Scholar 

  • 21.

    Kim, S. et al. All-water-based electron-beam lithography using silk as a resist. Nat. Nanotechnol. 9, 306–310 (2014).

    Google Scholar 

  • 22.

    Qin, N. et al. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat. Commun. 7, 13079 (2016).

    CAS  Google Scholar 

  • 23.

    Jiang, J. et al. Protein bricks: 2D and 3D bio-nanostructures with shape and function on demand. Adv. Mater. 30, 1705919 (2018).

    Google Scholar 

  • 24.

    Kurland, N. E., Dey, T., Kundu, S. C. & Yadavalli, V. K. Precise patterning of silk microstructures using photolithography. Adv. Mater. 25, 6207–6212 (2013).

    CAS  Google Scholar 

  • 25.

    Kurland, N. E., Dey, T., Wang, C., Kundu, S. C. & Yadavalli, V. K. Silk protein lithography as a route to fabricate sericin microarchitectures. Adv. Mater. 26, 4431–4437 (2014).

    CAS  Google Scholar 

  • 26.

    Liu, W. et al. Precise protein photolithography (P3): high performance biopatterning using silk fibroin light chain as the resist. Adv. Sci. 4, 1700191 (2017).

    Google Scholar 

  • 27.

    Tao, H., Kaplan, D. L. & Omenetto, F. G. Silk materials—a road to sustainable high technology. Adv. Mater. 24, 2824–2837 (2012).

    CAS  Google Scholar 

  • 28.

    Zhou, Z. et al. The use of functionalized silk fibroin films as a platform for optical diffraction-based sensing applications. Adv. Mater. 29, 1605471 (2017).

    Google Scholar 

  • 29.

    Zhou, Z. et al. Engineering the future of silk materials through advanced manufacturing. Adv. Mater. 30, 1706983 (2018).

    Google Scholar 

  • 30.

    Rockwood, D. N. et al. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011).

    CAS  Google Scholar 

  • 31.

    Stiegler, J. M. et al. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy. ACS Nano 5, 6494–6499 (2011).

    CAS  Google Scholar 

  • 32.

    Govyadinov, A. A., Amenabar, I., Huth, F., Carney, P. S. & Hillenbrand, R. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett. 4, 1526–1531 (2013).

  • 33.

    Autore, M., Mester, L., Goikoetxea, M. & Hillenbrand, R. Substrate matters: surface-polariton enhanced infrared nanospectroscopy of molecular vibrations. Nano Lett. 19, 8066–8073 (2019).

    CAS  Google Scholar 

  • 34.

    Wright, C. D. et al. Write strategies for multiterabit per square inch scanned-probe phase-change memories. Appl. Phys. Lett. 97, 173104 (2010).

    Google Scholar 

  • 35.

    Holzner, F., Paul, P., Drechsler, U., Despont, M. & Duerig, U. High density multi-level recording for archival data preservation. Appl. Phys. Lett. 99, 023110–023113 (2011).

    Google Scholar 

  • 36.

    Zhao, Y.-Q. et al. Silkworm silk/poly(lactic acid) biocomposites: dynamic mechanical, thermal and biodegradable properties. Polym. Degrad. Stab. 95, 1978–1987 (2010).

    CAS  Google Scholar 

  • 37.

    Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

    CAS  Google Scholar 

  • Source