• 1.

    Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human gut microbes associated with obesity. Nature444, 1022–1023 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Turnbaugh, P. J. & Gordon, J. I. The core gut microbiome, energy balance and obesity. J. Physiol.587, 4153–4158 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature498, 99–103 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Hartstra, A. V., Bouter, K. E. C., Bäckhed, F. & Nieuwdorp, M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care38, 159–165 (2015).

    CAS  PubMed  Google Scholar 

  • 5.

    Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology146, 1489–1499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Suchodolski, J. S., Dowd, S. E., Wilke, V., Steiner, J. M. & Jergens, A. E. 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease. PLoS ONE7, e39333 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Xenoulis, P. G. et al. Molecular-phylogenetic characterization of microbial communities imbalances in the small intestine of dogs with inflammatory bowel disease. FEMS Microbiol. Ecol.66, 579–589 (2008).

    CAS  PubMed  Google Scholar 

  • 8.

    Kim, D., Yoo, S.-A. & Kim, W.-U. Gut microbiota in autoimmunity: potential for clinical applications. Arch. Pharm. Res.39, 1565–1576 (2016).

    CAS  PubMed  Google Scholar 

  • 9.

    Markle, J. G. M. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science339, 1084–1088 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Feng, Q. et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat. Commun.6, 6528 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer13, 800–812 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Daniels, L. et al. Fecal microbiome analysis as a diagnostic test for diverticulitis. Eur. J. Clin. Microbiol. Infect. Dis.33, 1927–1936 (2014).

    CAS  PubMed  Google Scholar 

  • 13.

    Suchodolski, J. S. Diagnosis and interpretation of intestinal dysbiosis in dogs and cats. Vet. J.215, 30–37 (2016).

    CAS  PubMed  Google Scholar 

  • 14.

    Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science359, 1366–1370 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Carroll, I. M., Ringel-Kulka, T., Siddle, J. P., Klaenhammer, T. R. & Ringel, Y. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS ONE7, e46953 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Roesch, L. F. W. et al. Influence of fecal sample storage on bacterial community diversity. Open Microbiol. J.3, 40–46 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Cardona, S. et al. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol.12, 158 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Fouhy, F. et al. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS ONE10, e0119355 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Guo, Y. et al. Effect of short-term room temperature storage on the microbial community in infant fecal samples. Sci. Rep.6, 26648 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Nechvatal, J. M. et al. Fecal collection, ambient preservation, and DNA extraction for PCR amplification of bacterial and human markers from human feces. J. Microbiol. Methods72, 124–132 (2008).

    CAS  PubMed  Google Scholar 

  • 21.

    Tedjo, D. I. et al. The effect of sampling and storage on the fecal microbiota composition in healthy and diseased subjects. PLoS ONE10, e0126685 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Wu, G. D. et al. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol.10, 206 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Choo, J. M., Leong, L. E. & Rogers, G. B. Sample storage conditions significantly influence faecal microbiome profiles. Sci. Rep.5, 16350 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Anderson, E. L. et al. A robust ambient temperature collection and stabilization strategy: enabling worldwide functional studies of the human microbiome. Sci. Rep.6, 31731 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Panek, M. et al. Methodology challenges in studying human gut microbiota – effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci. Rep.8, 5143 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Alessandri, G. et al. Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. Environ. Microbiol.21, 1331–1343 (2019).

    CAS  PubMed  Google Scholar 

  • 27.

    Deng, P. & Swanson, K. S. Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. Br. J. Nutr.113, S6–S17 (2015).

    CAS  PubMed  Google Scholar 

  • 28.

    Guard, B. C. et al. Characterization of the fecal microbiome during neonatal and early pediatric development in puppies. PLoS ONE12, e0175718 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science312, 1355–1359 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Eckburg, P. B. et al. Microbiology: diversity of the human intestinal microbial flora. Science308, 1635–1638 (2005).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Middelbos, I. S. et al. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS ONE5, e9768 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Song, S. J. et al. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems1, e00021-e116 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Shaw, A. G. et al. Latitude in sample handling and storage for infant faecal microbiota studies: the elephant in the room? Microbiome4, 40 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Hill, C. J. et al. Effect of room temperature transport vials on DNA quality and phylogenetic composition of faecal microbiota of elderly adults and infants. Microbiome4, 19 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J.11, 841–852 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis.15, 1183–1189 (2009).

    CAS  PubMed  Google Scholar 

  • 37.

    Gorzelak, M. A. et al. Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool. PLoS ONE10, e0134802 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Lin, C.-Y. et al. Effects of a Saccharomyces cerevisiae fermentation product on fecal characteristics, nutrient digestibility, fecal fermentative end-products, fecal microbial populations, immune function, and diet palatability in adult dogs. J. Anim. Sci.97, 1586–1599 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Swanson, K. S., Grieshop, C. M., Flickinger, E. A., Merchen, N. R. & Fahey, G. C. Effects of supplemental fructooligosaccharides and mannanoligosaccharides on colonic microbial populations, immune function and fecal odor components in the canine. J. Nutr.132, 1717S-1719S (2002).

    CAS  PubMed  Google Scholar 

  • 40.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics27, 2957–2963 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Yilmaz, P. et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res.42, D643–D648 (2014).

    CAS  PubMed  Google Scholar 

  • 44.

    Al-Ghalith, G. A., Montassier, E., Ward, H. N. & Knights, D. NINJA-OPS: fast accurate marker gene alignment using concatenated ribosomes. PLOS Comput. Biol.12, e1004658 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol.71, 8228–8235 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics30, 3123–3124 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc.57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • Source