• 1.

    Pliakos, E. E., Andreatos, N., Shehadeh, F., Ziakas, P. D. & Mylonakis, E. The cost-effectiveness of rapid diagnostic testing for the diagnosis of bloodstream infections with or without antimicrobial stewardship. Clin. Microbiol. Rev. 31, e00095-e117 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 2.

    McNamara, J. F. et al. Long-term morbidity and mortality following bloodstream infection: a systematic literature review. J. Infect. 77, 1–8 (2018).

    PubMed  Google Scholar 

  • 3.

    Singer, M. et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801–810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Shankar-Hari, M. et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 775–787 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Buetti, N., Atkinson, A., Marschall, J. & Kronenberg, A. Swiss Centre for Antibiotic Resistance (ANRESIS): incidence of bloodstream infections: a nationwide surveillance of acute care hospitals in Switzerland 2008–2014. BMJ Open 7, e013665 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Vihta, K. D. et al. Trends over time in Escherichia coli bloodstream infections, urinary tract infections, and antibiotic susceptibilities in Oxfordshire, UK, 1998–2016: a study of electronic health records. Lancet Infect. Dis. 18, 1138–1149 (2018).

    PubMed  Google Scholar 

  • 7.

    Ferrer, R. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit. Care Med. 42, 1749–1755 (2014).

    CAS  PubMed  Google Scholar 

  • 8.

    Seymour, C. W. et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl. J. Med. 376, 2235–2244 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Jones, A. E. & Puskarich, M. A. The surviving sepsis campaign guidelines 2012: update for emergency physicians. Ann. Emerg. Med. 63, 35–47 (2014).

    PubMed  Google Scholar 

  • 10.

    Leibovici, L. et al. Monotherapy versus beta-lactam-aminoglycoside combination treatment for gram-negative bacteremia: a prospective, observational study. Antimicrob. Agents Chemother. 41, 1127–1133 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Dellinger, R. P. et al. Surviving sepsis campaign guidelines committee including the pediatric subgroup: Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 41, 580–637 (2013).

    PubMed  Google Scholar 

  • 12.

    The Review on Antimicrobial Resistance, chaired by Jim O’Neill. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations (2014); https://www.jpiamr.eu/wp-content/uploads/2014/12/AMR-Review-Paper-Tackling-a-crisis-for-the-health-and-wealth-of-nations_1-2.pdf.

  • 13.

    Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing; 25th Informational supplement. CLSI document M100-S25 (Clinical and Laboratory Standards Institute, Wayne, PA, 2015).

  • 14.

    Fournier, P. E. et al. Modern clinical microbiology: new challenges and solutions. Nat. Rev. Microbiol. 11, 574–585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Raoult, D., Fournier, P. E. & Drancourt, M. What does the future hold for clinical microbiology?. Nat. Rev. Microbiol. 2, 151–159 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Van Belkum, A. & Dunne, W. M. Jr. Next-generation antimicrobial susceptibility testing. J. Clin. Microbiol. 51, 2018–2024 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Davenport, M. et al. New and developing diagnostic technologies for urinary tract infections. Nat. Rev. Urol. 14, 296–310 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Doern, C. D. The confounding role of antimicrobial stewardship programs in understanding the impact of technology on patient care. J. Clin. Microbiol. 54, 2420–2423 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Walker, T. et al. Clinical impact of laboratory implementation of Verigene BC-GN microarray-based assay for detection of Gram-negative bacteria in positive blood cultures. J. Clin. Microbiol. 54, 1789–1796 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Salimnia, H. et al. Evaluation of the filmarray blood culture identification panel: results of a multicenter controlled trial. J. Clin. Microbiol. 54, 687–698 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Lange, C., Schubert, S., Jung, J., Kostrzewa, M. & Sparbier, K. Quantitative matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid resistance detection. J. Clin. Microbiol. 52, 4155–4162 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Jung, J. S. et al. Evaluation of a semiquantitative matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid antimicrobial susceptibility testing of positive blood cultures. J. Clin. Microbiol. 54, 2820–2824 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Oviaño, M. & Bou, G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the rapid detection of antimicrobial resistance mechanisms and beyond. Clin. Microbiol. Rev. 32, e00037-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    de Cueto, M., Ceballos, E., Martinez-Martinez, L., Perea, E. J. & Pascual, A. Use of positive blood cultures for direct identification and susceptibility testing with the Vitek 2 system. J. Clin. Microbiol. 42, 3734–3738 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Bobenchik, A. M., Hindler, J. A., Giltner, C. L., Saeki, S. & Humphries, R. M. Performance of Vitek 2 for antimicrobial susceptibility testing of Staphylococcus spp. and Enterococcus spp. J. Clin. Microbiol. 52, 392–397 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Bobenchik, A.M., Deak, E., Hindler, J.A., Charlton, C.L. & Humphries, R.M. Performance of Vitek 2 for antimicrobial susceptibility testing of Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia with Vitek 2 (2009 FDA) and CLSI M100S 26th edition Breakpoints. J Clin. Microbiol. 55, 450–456 (2017).

  • 27.

    Giovanni, G. et al. Comparative evaluation of the Vitek-2 Compact and Phoenix systems for rapid identification and antibiotic susceptibility testing directly from blood cultures of Gram-negative and Gram-positive isolates. Diagn. Microbiol. Infect. Dis. 72, 20–31 (2012).

    Google Scholar 

  • 28.

    Marschal, M. et al. Evaluation of the accelerate pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by Gram-negative pathogens. J. Clin. Microbiol. 55, 2116–2126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Jarvis, R. M. & Goodacre, R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal. Chem. 76, 40–47 (2004).

    CAS  PubMed  Google Scholar 

  • 30.

    Liu, T. T. et al. A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall. PLoS ONE 4, e5470 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Liu, C. Y. et al. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Sci. Rep. 6, 23375 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Boardman, A. K. et al. Rapid detection of bacteria from blood with surface-enhanced Raman spectroscopy. Anal. Chem. 88, 8026–8035 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Premasiri, W. R. et al. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal. Bioanal. Chem. 408, 4631–4647 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Chiu, S. W. Y. et al. Quantification of biomolecules responsible for biomarkers in the surface-enhanced Raman spectra of bacteria using liquid chromatography-mass spectrometry. Phys. Chem. Chem. Phys. 20, 8032–8041 (2018).

    CAS  PubMed  Google Scholar 

  • 35.

    Xu, H., Bjerneld, E. J., Käll, M. & Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357 (1999).

    ADS  CAS  Google Scholar 

  • 36.

    Lentacker, I., De Cock, I., Deckers, R., De Smedt, S. C. & Moonen, C. T. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv. Drug Deliv. Rev. 72, 49–64 (2014).

    CAS  PubMed  Google Scholar 

  • 37.

    Fu, H., Comer, J., Cai, W. & Chipot, C. Sonoporation at small and large length scales: effect of cavitation bubble collapse on membranes. J. Phys. Chem. Lett. 6, 413–418 (2015).

    CAS  PubMed  Google Scholar 

  • 38.

    Piyasena, P., Mohareb, E. & McKellar, R. C. Inactivation of microbes using ultrasound: a review. Int. J. Food Microbiol. 87, 207–216 (2003).

    CAS  PubMed  Google Scholar 

  • 39.

    Gao, S., Lewis, G. D., Ashokkumar, M. & Hemar, Y. Inactivation of microorganisms by low-frequency high-power ultrasound: 1 Effect of growth phase and capsule properties of the bacteria. Ultrason. Sonochem. 21, 446–453 (2013).

    PubMed  Google Scholar 

  • 40.

    Sesal, N. C. & Kekeç, Ö. Inactivation of Escherichia coli and Staphylococcus aureus by ultrasound. J. Ultrasound Med. 33, 1663–1668 (2014).

    PubMed  Google Scholar 

  • 41.

    Wiegand, I., Hilpert, K. & Hancock, R. E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protoc. 3, 163–175 (2008).

    CAS  Google Scholar 

  • 42.

    Jorgensen, J. H. & Ferraro, M. J. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 49, 1749–1755 (2009).

    CAS  PubMed  Google Scholar 

  • 43.

    Cunha, B. A. Antibiotic essentials 7th edn. (Jones & Bartlett Publishers, Sudbury, MA, 2008).

    Google Scholar 

  • 44.

    Wang, H. H. et al. Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater. 18, 491–495 (2006).

    CAS  Google Scholar 

  • 45.

    Phillips, W. A., Hosking, C. S. & Shelton, M. J. Effect of ammonium chloride treatment on human polymorphonuclear leucocyte iodination. J. Clin. Pathol. 36, 808–810 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Marshall, P. N. Flow cytometry lytic agent and method enabling 5-part leukocyte differential count. U.S. Patent, US5510267A (1996).

  • 47.

    Lorenz, B., Rösch, P. & Popp, J. Isolation matters-processing blood for Raman microspectroscopic identification of bacteria. Anal. Bioanal. Chem. 411, 5445–5454 (2019).

    CAS  PubMed  Google Scholar 

  • 48.

    Rinas, U., Hellmuth, K., Kang, R., Seeger, A. & Schlieker, H. Entry of Escherichia coli into stationary phase is indicated by endogenous and exogenous accumulation of nucleobases. Appl. Environ. Microbiol. 61, 4147–4151 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Brauer, M. J. et al. Conservation of the metabolomic response to starvation across two divergent microbes. Proc. Natl. Acad. Sci. U.S.A. 103, 19302–19307 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Link, H., Fuhrer, T., Gerosa, L., Zamboni, N. & Sauer, U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 12, 1091–1097 (2015).

    CAS  PubMed  Google Scholar 

  • 51.

    Liebeke, M. et al. A metabolomics and proteomics study of the adaptation of Staphylococcus aureus to glucose starvation. Mol. Biosyst. 7, 1241–1253 (2011).

    CAS  PubMed  Google Scholar 

  • 52.

    Belenky, P. et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 13, 968–980 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Zampieri, M., Zimmermann, M., Claassen, M. & Sauer, U. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Rep. 19, 1214–1228 (2017).

    CAS  PubMed  Google Scholar 

  • 54.

    Yang, J. H. et al. A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell 177, 1649–1661 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Lopatkin, A. J. et al. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. Nat. Microbiol. 4, 2109–2117 (2019).

    PubMed  Google Scholar 

  • 56.

    Dörries, K., Schlueter, R. & Lalk, M. Impact of antibiotics with various target sites on the metabolome of Staphylococcus aureus. Antimicrob. Agents Chemother. 58, 7151–7163 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Schelli, K., Zhong, F. & Zhu, J. Comparative metabolomics revealing Staphylococcus aureus metabolic response to different antibiotics. Microbiol. Biotechnol. 10, 1764–1774 (2017).

    CAS  Google Scholar 

  • 58.

    Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    CAS  Google Scholar 

  • 59.

    Biring, S., Wang, H. H., Wang, J. K. & Wang, Y. L. Light scattering from 2D arrays of monodispersed Ag-nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling. Opt. Express. 16, 15312–15324 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 60.

    Lin, B. Y. et al. Unraveling near-field origin of electromagnetic waves scattered from silver nanorod arrays using pseudo-spectral time-domain calculation. Opt. Express. 17, 14211–14228 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 61.

    Cheng, T. Y. et al. Revealing local, enhanced optical field characteristics of Au nanoparticle arrays with 10 nm gap using scattering-type scanning near-field optical microscopy. Phys. Chem. Chem. Phys. 15, 4275–4282 (2013).

    CAS  PubMed  Google Scholar 

  • 62.

    Dvoynenko, M. M. & Wang, J. K. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering. Opt. Lett. 32, 3552–3554 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 63.

    Dvoynenko, M. M. & Wang, J. K. Can electrodynamic interaction between a molecule and metal dominate a continuum background in surface-enhanced Raman scattering?. Phys. Chem. Chem. Phys. 17, 27258 (2015).

    CAS  PubMed  Google Scholar 

  • 64.

    Dvoynenko, M. M., Wang, H. H., Hsiao, H. H., Wang, Y. L. & Wang, J. K. Study of Signal-to-background ratio of surface-enhanced raman scattering: dependences on excitation wavelength and hot-spot gap. J. Phys. Chem. C. 121, 26438–26445 (2017).

    Google Scholar 

  • 65.

    Sinha, M. et al. Emerging technologies for molecular diagnosis of sepsis. Clin. Microbiol. Rev. 31, e00089-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 66.

    Samuel, L. Direct detection of pathogens in bloodstream during sepsis: are we there yet?. JALM. 3, 631–642 (2019).

    CAS  PubMed  Google Scholar 

  • 67.

    Eling, N., Morgan, M. D. & Marioni, J. C. Challenges in measuring and understanding biological noise. Nature Rev. Genet. 20, 536–548 (2019).

    CAS  PubMed  Google Scholar 

  • 68.

    Takhaveev, V. & Heinemann, M. Metabolic heterogeneity in clonal microbial populations. Curr. Opin. Microbiol. 45, 30–38 (2018).

    CAS  PubMed  Google Scholar 

  • 69.

    Mitchell, S. & Hoffmann, A. Identifying noise sources governing cell-to-cell variability. Curr. Opin. Syst. Biol. 8, 39–45 (2018).

    PubMed  Google Scholar 

  • Source