• 1.

    Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387 (2013).

    CAS  PubMed  Google Scholar 

  • 2.

    Butler, M. S., Blaskovich, M. A. & Cooper, M. A. Antibiotics in the clinical pipeline at the end of 2015. J. Antibiot. 70, 3–24 (2017).

    CAS  PubMed  Google Scholar 

  • 3.

    Mahlapuu, M., Håkansson, J., Ringstad, L. & Björn, C. Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol. 6, 194 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Hancock, R. E., Haney, E. F. & Gill, E. E. The immunology of host defence peptides: beyond antimicrobial activity. Nat. Rev. Immunol. 16, 321 (2016).

    CAS  PubMed  Google Scholar 

  • 5.

    De Smet, K. & Contreras, R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotech. Lett. 27, 1337–1347 (2005).

    Google Scholar 

  • 6.

    Otto, M. Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev. Dermatol. 5, 183–195 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Xhindoli, D. et al. The human cathelicidin LL-37—pore-forming antibacterial peptide and host-cell modulator. Biochimica et Biophysica Acta (BBA)-Biomembranes 1858, 546–566 (2016).

    CAS  Google Scholar 

  • 8.

    Yeaman, M. R. & Yount, N. Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27–55 (2003).

    CAS  PubMed  Google Scholar 

  • 9.

    Omardien, S., Brul, S. & Zaat, S. A. Antimicrobial activity of cationic antimicrobial peptides against gram-positives: current progress made in understanding the mode of action and the response of bacteria. Front. Cell Dev. Biol. 4, 111 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Sass, V. et al. Human β-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect. Immun. 78, 2793–2800 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Andersson, D. I., Hughes, D. & Kubicek-Sutherland, J. Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updates 26, 43–57 (2016).

    CAS  Google Scholar 

  • 12.

    Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    CAS  PubMed  Google Scholar 

  • 13.

    Gordon, R. J. & Lowy, F. D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 46, S350–S359 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Midorikawa, K. et al. Staphylococcus aureus susceptibility to innate antimicrobial peptides, β-defensins and CAP18, expressed by human keratinocytes. Infect. Immun. 71, 3730–3739 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Chen, X. et al. Synergistic effect of antibacterial agents human β-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J. Dermatol. Sci. 40, 123–132 (2005).

    CAS  PubMed  Google Scholar 

  • 16.

    Kubicek-Sutherland, J. Z. et al. Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides. J. Antimicrob. Chemother. 72, 115–127 (2017).

    CAS  PubMed  Google Scholar 

  • 17.

    Kisich, K. O. et al. The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on β-defensin 3. J. Investig. Dermatol. 127, 2368–2380 (2007).

    CAS  PubMed  Google Scholar 

  • 18.

    Peschel, A. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 193, 1067–1076 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410 (1999).

    CAS  PubMed  Google Scholar 

  • 20.

    Koprivnjak, T., Weidenmaier, C., Peschel, A. & Weiss, J. P. Wall teichoic acid deficiency in Staphylococcus aureus confers selective resistance to mammalian group IIA phospholipase A2 and human β-defensin 3. Infect. Immun. 76, 2169–2176 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Kagan, B. L., Selsted, M. E., Ganz, T. & Lehrer, R. I. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc. Natl. Acad. Sci. 87, 210–214 (1990).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Proctor, R. A. et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol. 4, 295–305 (2006).

    CAS  PubMed  Google Scholar 

  • 23.

    Gläser, R., Becker, K., von Eiff, C., Meyer-Hoffert, U. & Harder, J. Decreased susceptibility of Staphylococcus aureus small-colony variants toward human antimicrobial peptides. J. Investig. Dermatol. 134, 2347–2350 (2014).

    PubMed  Google Scholar 

  • 24.

    Koo, S.-P., Bayer, A. S., Sahl, H.-G., Proctor, R. A. & Yeaman, M. R. Staphylocidal action of thrombin-induced platelet microbicidal protein is not solely dependent on transmembrane potential. Infect. Immun. 64, 1070–1074 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Vestergaard, M. et al. Inhibition of the ATP Synthase Eliminates the Intrinsic Resistance of Staphylococcus aureus towards Polymyxins. mBio 8, e01114–e01117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Zavascki, A. P., Goldani, L. Z., Li, J. & Nation, R. L. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J. Antimicrob. Chemother. 60, 1206–1215 (2007).

    CAS  PubMed  Google Scholar 

  • 27.

    Deckers-Hebestreit, G. & Altendorf, K. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Annu. Rev. Microbiol. 50, 791–824 (1996).

    CAS  PubMed  Google Scholar 

  • 28.

    Grosser, M. R. et al. Genetic requirements for Staphylococcus aureus nitric oxide resistance and virulence. PLoS Pathog. 14, e1006907 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Hong, S. & Pedersen, P. L. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol. Mol. Biol. Rev. 72, 590–641 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Nøhr-Meldgaard, K., Ovsepian, A., Ingmer, H. & Vestergaard, M. Resveratrol enhances the efficacy of aminoglycosides against Staphylococcus aureus. Int. J. Antimicrob. Agents 52, 390–396 (2018).

    PubMed  Google Scholar 

  • 31.

    Balemans, W. et al. Novel antibiotics targeting respiratory ATP synthesis in Gram-positive pathogenic bacteria. Antimicrob. Agents Chemother. 56, 4131–4139 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Haagsma, A. C. et al. Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob. Agents Chemother. 53, 1290–1292 (2009).

    CAS  PubMed  Google Scholar 

  • 33.

    Gledhill, J. R., Montgomery, M. G., Leslie, A. G. & Walker, J. E. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Natl. Acad. Sci. 104, 13632–13637 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Dadi, P. K., Ahmad, M. & Ahmad, Z. Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Int. J. Biol. Macromol. 45, 72–79 (2009).

    CAS  PubMed  Google Scholar 

  • 35.

    Vestergaard, M. & Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 53, 716–723 (2019).

    CAS  PubMed  Google Scholar 

  • 36.

    Troelstra, A. et al. Dual effects of soluble CD14 on LPS priming of neutrophils. J. Leukoc. Biol. 61, 173–178 (1997).

    CAS  PubMed  Google Scholar 

  • 37.

    Vestergaard, M. et al. Novel pathways for ameliorating the fitness cost of gentamicin resistant small colony variants. Front. Microbiol. 7, 1866 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D. & Zychlinsky, A. Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol. 30, 459–489 (2012).

    CAS  PubMed  Google Scholar 

  • 39.

    Zanger, P., Nurjadi, D., Vath, B. & Kremsner, P. G. Persistent nasal carriage of Staphylococcus aureus is associated with deficient induction of human β-defensin 3 after sterile wounding of healthy skin in vivo. Infect. Immun. 79, 2658–2662 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Lobritz, M. A. et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl. Acad. Sci. 112, 8173–8180 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 41.

    Yeaman, M. R., Bayer, A. S., Koo, S.-P., Foss, W. & Sullam, P. M. Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J. Clin. Investig. 101, 178–187 (1998).

    CAS  PubMed  Google Scholar 

  • 42.

    Samuelsen, Ø et al. Staphylococcus aureus small colony variants are resistant to the antimicrobial peptide lactoferricin B. J. Antimicrob. Chemother. 56, 1126–1129 (2005).

    CAS  PubMed  Google Scholar 

  • 43.

    Zhang, P., Wright, J. A., Tymon, A. & Nair, S. P. Bicarbonate induces high-level resistance to the human antimicrobial peptide LL-37 in Staphylococcus aureus small colony variants. J. Antimicrob. Chemother. 73, 615–619 (2017).

    PubMed Central  Google Scholar 

  • 44.

    Sadowska, B. et al. Characteristics of Staphylococcus aureus isolated from airways of cystic fibrosis patients, and their small colony variants. FEMS Immunol. Med. Microbiol. 32, 191–197 (2002).

    CAS  PubMed  Google Scholar 

  • 45.

    Kahl, B. C. Small colony variants (SCVs) of Staphylococcus aureus—a bacterial survival strategy. Infect. Genet. Evolut. 21, 515–522 (2014).

    CAS  Google Scholar 

  • 46.

    Jensen, P. R. & Michelsen, O. Carbon and energy metabolism of atp mutants of Escherichia coli. J. Bacteriol. 174, 7635–7641 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Liu, A. et al. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob. Agents Chemother. 54, 1393–1403 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Alteri, C. J., Lindner, J. R., Reiss, D. J., Smith, S. N. & Mobley, H. L. The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol. Microbiol. 82, 145–163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Falla, T. J., Karunaratne, D. N. & Hancock, R. E. Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem. 271, 19298–19303 (1996).

    CAS  PubMed  Google Scholar 

  • 50.

    Pränting, M. & Andersson, D. I. Mechanisms and physiological effects of protamine resistance in Salmonella enterica serovar Typhimurium LT2. J. Antimicrob. Chemother. 65, 876–887 (2010).

    PubMed  Google Scholar 

  • 51.

    Gyurko, C., Lendenmann, U., Troxler, R. F. & Oppenheim, F. G. Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob. Agents Chemother. 44, 348–354 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Koshlukova, S. E., Lloyd, T. L., Araujo, M. W. & Edgerton, M. Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J. Biol. Chem. 274, 18872–18879 (1999).

    CAS  PubMed  Google Scholar 

  • 53.

    Ibberson, C. B. et al. Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection. Nat. Microbiol. 2, 17079 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Wilde, A. D. et al. Bacterial hypoxic responses revealed as critical determinants of the host-pathogen outcome by TnSeq analysis of Staphylococcus aureus invasive infection. PLoS Pathog. 11, e1005341 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Valentino, M. D. et al. Genes contributing to Staphylococcus aureus fitness in abscess-and infection-related ecologies. MBio 5, e01729-e1714 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Mahajan, R. Bedaquiline: first FDA-approved tuberculosis drug in 40 years. Int. J. Appl. Basic Med. Res. 3, 1 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Aschemann-Witzel, J. & Grunert, K. G. Resveratrol food supplements: a survey on the role of individual consumer characteristics in predicting the attitudes and adoption intentions of US American and Danish respondents. BMC Public Health 15, 110 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Fabbrocini, G. et al. Resveratrol-containing gel for the treatment of acne vulgaris. Am. J. Clin. Dermatol. 12, 133–141 (2011).

    PubMed  Google Scholar 

  • 59.

    Duan, J. et al. Subinhibitory concentrations of resveratrol reduce alpha-hemolysin production in Staphylococcus aureus isolates by downregulating saeRS. Emerg. Microbes Infect. 7, 1–10 (2018).

    Google Scholar 

  • 60.

    Fey, P. D. et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 4, e00537-e512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Source