• 1.

    Singh, R. P., Huerta-Espino, J., Sharma, R., Joshi, A. K. & Trethowan, R. High yielding spring bread wheat germplasm for global irrigated and rainfed production systems. Euphytica 157, 351–363 (2007).

    Google Scholar 

  • 2.

    Chen, X. Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Secur. https://doi.org/10.1007/s12571-020-01016-z (2020).

    Article  Google Scholar 

  • 3.

    Chen, X. M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol. 27, 314–337 (2005).

    Google Scholar 

  • 4.

    Wellings, C. R. Global status of stripe rust: A review of historical and current threats. Euphytica 179, 129–141 (2011).

    Google Scholar 

  • 5.

    Beddow, J. M. et al. Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 1, 1–5 (2015).

    Google Scholar 

  • 6.

    Singh, R. P. et al. Disease impact on wheat yield potential and prospects of genetic control. Annu. Rev. Phytopathol. 54, 303–322 (2016).

    CAS  PubMed  Google Scholar 

  • 7.

    Chen, X. et al. Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis. 86, 39–46 (2002).

    PubMed  Google Scholar 

  • 8.

    Murray, G. M. & Brennan, J. P. Estimating disease losses to the Australian wheat industry. Australas. Plant Pathol. 38, 558–570 (2009).

    Google Scholar 

  • 9.

    Chen, X. & Kang, Z. Stripe rust. Stripe Rust https://doi.org/10.1007/978-94-024-1111-9 (2017).

    Article  Google Scholar 

  • 10.

    Wan, A. et al. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis. 88, 896–904 (2004).

    PubMed  Google Scholar 

  • 11.

    Lyon, B. & Broders, K. Impact of climate change and race evolution on the epidemiology and ecology of stripe rust in central and eastern USA and Canada. Can. J. Plant Pathol. 39, 385–392 (2017).

    Google Scholar 

  • 12.

    Hovmøller, M. S. et al. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 65, 402–411 (2016).

    Google Scholar 

  • 13.

    Ali, S. et al. Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front. Plant Sci. 8, 1–14 (2017).

    ADS  CAS  Google Scholar 

  • 14.

    Line, R. F. & Chen, X. Successes in breeding for and managing durable resistance to wheat rusts. Plant Dis. 79, 1254–1255 (1995).

    Google Scholar 

  • 15.

    McIntosh, R., Wellings, C. & Park, R. Wheat Rusts: An Atlas of Resistance Genes (CSIRO Publishing, Clayton, 1995).

    Google Scholar 

  • 16.

    Chen, X. High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am. J. Plant Sci. 04, 608–627 (2013).

    Google Scholar 

  • 17.

    He, Z. H., Rajaram, S., Xin, Z. Y. & Huang, G. Z. A History of Wheat Breeding in China (CIMMYT, Mexico, 2001).

    Google Scholar 

  • 18.

    Wan, A. M., Chen, X. M. & He, Z. H. Wheat stripe rust in China. Aust. J. Agric. Res. 58, 605–619 (2007).

    Google Scholar 

  • 19.

    Line, R. F. & Qayoum, A. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the Cause of Stripe Rust of Wheat) in North America, 1968–87. U. S. Dep. Agric. Agric. Res. Serv. Tech. Bull. No. 1788 (1992).

  • 20.

    McIntosh, R., Mu, J., Han, D. & Kang, Z. Wheat stripe rust resistance gene Yr24/Yr26: A retrospective review. Crop J. 6, 321–329 (2018).

    Google Scholar 

  • 21.

    Sharma-Poudyal, D. et al. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis. 97, 379–386 (2013).

    CAS  PubMed  Google Scholar 

  • 22.

    Qayoum, A. & Line, R. F. High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 75, 1121–1125 (1985).

    Google Scholar 

  • 23.

    McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Morris, C. & Xia, X. C. Catalogue of gene symbols for wheat: 2017 supplement (2017).

  • 24.

    Li, J. et al. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor. Appl. Genet. 133, 1095–1107 (2020).

    CAS  PubMed  Google Scholar 

  • 25.

    Feng, J. et al. Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology 108, 737–747 (2018).

    CAS  PubMed  Google Scholar 

  • 26.

    Nsabiyera, V. et al. Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor. Appl. Genet. 131, 1459–1467 (2018).

    CAS  PubMed  Google Scholar 

  • 27.

    Pakeerathan, K. et al. Identification of a new source of stripe rust resistance Yr82 in wheat. Theor. Appl. Genet. 132, 3169–3176 (2019).

    CAS  PubMed  Google Scholar 

  • 28.

    Rosewarne, G. M. et al. Quantitative trait loci of stripe rust resistance in wheat. Theor. Appl. Genet. 126, 2427–2449 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    ADS  CAS  PubMed  Google Scholar 

  • 30.

    Remington, D. L. et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. USA 98, 11479–11484 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Flint-Garcia, S. A., Thornsberry, J. M. & Buckler, E. S. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54, 357–374 (2003).

    CAS  PubMed  Google Scholar 

  • 32.

    Yu, J. & Buckler, E. S. Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol. 17, 155–160 (2006).

    CAS  PubMed  Google Scholar 

  • 33.

    Juliana, P. et al. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat. Genet. 51, 1530–1539 (2019).

    CAS  PubMed  Google Scholar 

  • 34.

    Juliana, P. et al. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theor. Appl. Genet. 131, 1405–1422 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Yang, F. et al. Genome-wide association mapping of adult-plant resistance to stripe rust in common wheat (Triticum aestivum L.). Plant Dis. https://doi.org/10.1094/pdis-10-19-2116-re (2020).

    Article  PubMed  Google Scholar 

  • 36.

    Godoy, J. G., Rynearson, S., Chen, X. & Pumphrey, M. Genome-wide association mapping of loci for resistance to stripe rust in north American elite spring wheat germplasm. Phytopathology 108, 234–245 (2018).

    CAS  PubMed  Google Scholar 

  • 37.

    Zegeye, H., Rasheed, A., Makdis, F., Badebo, A. & Ogbonnaya, F. C. Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS ONE 9, e105593 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Naruoka, Y., Garland-Campbell, K. A. & Carter, A. H. Genome-wide association mapping for stripe rust (Puccinia striiformis F. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.). Theor. Appl. Genet. 128, 1083–1101 (2015).

    CAS  PubMed  Google Scholar 

  • 39.

    Muleta, K. T. et al. Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions. BMC Plant Biol. 17, 134 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Singh, R. P. et al. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179, 175–186 (2011).

    Google Scholar 

  • 41.

    Chapman, J. A. et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 16, 26 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Vazquez, M. D. et al. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials. Theor. Appl. Genet. 124, 1–11 (2012).

    CAS  Google Scholar 

  • 43.

    Zwart, R. S. et al. QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol. Breed. 26, 107–124 (2010).

    Google Scholar 

  • 44.

    Hou, L. et al. Mapping a large number of QTL for durable resistance to stripe rust in winter wheat druchamp using SSR and SNP markers. PLoS ONE 10, 1–24 (2015).

    Google Scholar 

  • 45.

    Maccaferri, M. et al. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 (Bethesda) https://doi.org/10.1534/g3.114.014563 (2015).

    Article  Google Scholar 

  • 46.

    Bariana, H. S. & Mcintosh, R. A. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36, 476–482 (1993).

    CAS  PubMed  Google Scholar 

  • 47.

    Helguera, M. et al. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use. Crop Sci 43, 1839–1847 (2003).

    CAS  Google Scholar 

  • 48.

    Bayles, R. A., Flath, K., Hovmoller, M. S. & De Vallavieille-Pope, C. Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe. Agronomie https://doi.org/10.1051/agro:2000176 (2000).

    Article  Google Scholar 

  • 49.

    Luo, P., Hu, X., Zhang, H. & Ren, Z. Genes for resistance to stripe rust on chromosome 2B and their application in wheat breeding. Prog. Nat. Sci. 19, 9–15 (2009).

    CAS  Google Scholar 

  • 50.

    Luo, P. G. et al. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome 51, 922–927 (2008).

    CAS  PubMed  Google Scholar 

  • 51.

    Yang, E. N. et al. QTL analysis of the spring wheat ‘Chapio’ identifies stable stripe rust resistance despite inter-continental genotype × environment interactions. Theor. Appl. Genet. 126, 1721–1732 (2013).

    CAS  PubMed  Google Scholar 

  • 52.

    Singh, R. P., William, H. M., Huerta-Espino, J. & Crosby, M. Identification and mapping of gene Yr31 for resistance to stripe rust in Triticum aestivum cultivar pastor. In Proceedings of the 10th International Wheat Genetics Symposium (eds Pogna, N. E. et al.) 411–413 (Instituto Sperimentale per la Cerealicoltura, Rome, Italy, 2003).

  • 53.

    Lan, C. et al. Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace pingyuan 50 through bulked segregant analysis. Phytopathology 100, 313–318 (2010).

    ADS  PubMed  Google Scholar 

  • 54.

    Melichar, J. P. E., Berry, S., Newell, C., MacCormack, R. & Boyd, L. A. QTL identification and microphenotype characterisation of the developmentally regulated yellow rust resistance in the UK wheat cultivar Guardian. Theor. Appl. Genet. 117, 391–399 (2008).

    CAS  PubMed  Google Scholar 

  • 55.

    Suenaga, K., Singh, R. P., Huerta-Espino, J. & William, H. M. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93, 881–890 (2003).

    CAS  PubMed  Google Scholar 

  • 56.

    Jagger, L. J., Newell, C., Berry, S. T., MacCormack, R. & Boyd, L. A. The genetic characterisation of stripe rust resistance in the German wheat cultivar Alcedo. Theor. Appl. Genet. 122, 723–733 (2011).

    CAS  PubMed  Google Scholar 

  • 57.

    Basnet, B. R. et al. Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol. Breed. 33, 385–399 (2014).

    CAS  Google Scholar 

  • 58.

    Randhawa, M. et al. Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor. Appl. Genet. 127, 317–324 (2014).

    CAS  PubMed  Google Scholar 

  • 59.

    Herrera-Foessel, S. A. et al. Yr60, a gene conferring moderate resistance to stripe rust in wheat. Plant Dis. 99, 508–511 (2015).

    CAS  PubMed  Google Scholar 

  • 60.

    Bulli, P., Zhang, J., Chao, S., Chen, X. & Pumphrey, M. Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection. G3 (Bethesda) 6, 2237–2253 (2016).

    CAS  Google Scholar 

  • 61.

    Vazquez, M. D. et al. Multi-location wheat stripe rust QTL analysis: genetic background and epistatic interactions. Theor. Appl. Genet. 128, 1307–1318 (2015).

    PubMed  Google Scholar 

  • 62.

    Zhang, R. et al. Two main stripe rust resistance genes identified in synthetic-derived wheat line soru#1. Phytopathology 109, 120–126 (2019).

    PubMed  Google Scholar 

  • 63.

    Singh, R. P., Nelson, J. C. & Sorrells, M. E. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci. 40, 1148–1155 (2000).

    CAS  Google Scholar 

  • 64.

    Wan, A. & Chen, X. Virulence characterization of Puccinia striiformis f. Sp. tritici using a new set of yr single-gene line differentials in the united states in 2010. Plant Dis. 98, 1534–1542 (2014).

    PubMed  Google Scholar 

  • 65.

    Bariana, H. S. et al. Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor. Appl. Genet. 112, 1143–1148 (2006).

    CAS  PubMed  Google Scholar 

  • 66.

    Lowe, I. et al. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor. Appl. Genet. 123, 143–157 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Qureshi, N. et al. Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Dis. 102, 413–420 (2018).

    CAS  PubMed  Google Scholar 

  • 68.

    Uauy, C. et al. High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor. Appl. Genet. 112, 97–105 (2005).

    CAS  PubMed  Google Scholar 

  • 69.

    Dong, Z. et al. Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78). Theor. Appl. Genet. https://doi.org/10.1007/s00122-017-2946-9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Gangwar, O. P. et al. Characterization of three new Yr9-virulences and identification of sources of resistance among recently developed Indian bread wheat germplasm. J. Plant Pathol. https://doi.org/10.1007/s42161-019-00302-w (2019).

    Article  Google Scholar 

  • 71.

    Gangwar, O. P. et al. Detection of new Yr1-Virulences in Puccinia striiformis f. sp. tritici population and its sources of resistance in advance wheat lines and released cultivars. Indian Phytopathol. https://doi.org/10.24838/ip.2017.v70.i3.74238 (2017).

    Article  Google Scholar 

  • 72.

    Hovmøller, M. S. & Rodriguez-Algaba, J. Report for Puccinia striiformis race analyses 2014. GRRC Glob. Rust Ref. Cent. https://doi.org/10.1038/ncom (2014).

    Article  Google Scholar 

  • 73.

    Mogens, S. H., Rodriguez-Algaba, J. & Grønbech Hansen, J. Report for Puccinia striiformis race analyses 2015. GRRC Glob. Rust Ref. Cent. https://doi.org/10.1038/ncom (2015).

    Article  Google Scholar 

  • 74.

    Støvring Hovmøller, M. et al. GRRC annual report 2019: Stem- and yellow rust genotyping and race analyses. GRRC Glob. Rust Ref. Cent. (2019).

  • 75.

    Hovmøller, M. S., Rodriguez-Algaba, J., Thach, T., Fejer Justesen, A. & Hansen, J. G. Report for Puccinia striiformis race analyses/molecular genotyping 2018. GRRC Glob. Rust Ref. Cent. (2018).

  • 76.

    Huerta-Espino, J., Villaseñor-Mir, H. E., Rodriguez-Garcia, M. F. & Singh, R. P. Emerging new virulence gene combinations in the Mexican Pst population. In Proceedings of the BGRI 2015 Technical Workshop 17–20 September, Sydney, NSW (2015).

  • 77.

    McNeal, F. H., Konzak, C. F., Smith, E. P., Tate, W. S. & Russell, T. S. A Uniform System for Recording and Processing Cereal Research Data (Agricultural Research Service, United States Department of Agriculture, 1971).

  • 78.

    Huber, P. J. & Ronchetti, E. M. Robust Statistics 2nd edn. (Wiley, Hoboken, 2009). .

    Google Scholar 

  • 79.

    Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J. L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 80.

    Glaubitz, J. C. et al. TASSEL-GBS : A high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9, e90346 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 81.

    IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, 1–163 (2018).

    Google Scholar 

  • 82.

    Money, D. et al. LinkImpute : Fast and accurate genotype imputation for nonmodel organisms. G3 (Bethesda) 5, 2383–2390 (2015).

    Google Scholar 

  • 83.

    Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).

    CAS  PubMed  Google Scholar 

  • 84.

    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    CAS  PubMed  Google Scholar 

  • 85.

    Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2006).

    CAS  PubMed  Google Scholar 

  • 86.

    Endelman, J. B. & Jannink, J. L. Shrinkage estimation of the realized relationship matrix. G3 (Bethesda) 2, 1405–1413 (2012).

    Google Scholar 

  • 87.

    Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 88.

    Lilin-yin. Package ‘CMplot’ version 3.4.0. (2018).

  • 89.

    Lewontin, R. C. The interaction of selection and Linkage. I. General considerations; heterotic models. Genetics 49, 49–67 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 90.

    Kolde, R. Package `pheatmap’. Bioconductor (2012).

  • Source