• 1.

    Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev.43, 3898–3907 (2014).

    Google Scholar 

  • 2.

    Tian, Y. & Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun.16, 1810–1811 (2004).

    Google Scholar 

  • 3.

    Tian, Y. & Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc.127, 7632–7637 (2005).

    Google Scholar 

  • 4.

    Mubeen, S., Hernandez-Soza, G., Moses, D., Lee, J. & Moskovits, M. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett.11, 5548–5552 (2011).

    ADS  Google Scholar 

  • 5.

    Lee, J., Mubeen, S., Li, X., Stucky, G. D. & Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett.12, 5014–5019 (2012).

    ADS  Google Scholar 

  • 6.

    Knight, M. W., Sobhani, A., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science332, 702–704 (2011).

    ADS  Google Scholar 

  • 7.

    Ingram, D. B. & Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc.133, 5202–5205 (2011).

    Google Scholar 

  • 8.

    Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem.3, 467–472 (2011).

    Google Scholar 

  • 9.

    Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett.13, 240–247 (2013).

    ADS  Google Scholar 

  • 10.

    Gomes Silva, C., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc.133, 595–602 (2011).

    Google Scholar 

  • 11.

    Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Locally oxidized silicon surface-plasmon schottky detector for telecom regime. Nano Lett.11, 2219–2224 (2011).

    ADS  Google Scholar 

  • 12.

    Nishijima, Y., Ueno, K., Yokota, Y., Murakoshi, K. & Misawa, H. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett.1, 2031 (2010).

    Google Scholar 

  • 13.

    Takahashi, Y. & Tatsuma, T. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett.11, 5426–5430 (2011).

    Google Scholar 

  • 14.

    Wang, F. & Melosh, N. A. Plasmonic energy collection through hot carrier extraction. Nano Lett.11, 5426–5430 (2011).

    ADS  Google Scholar 

  • 15.

    Narang, P., Sundararaman, R. & Atwater, H. A. Plasmonic hot carrier dynamics in solid-state andchemical systems for energy conversion. Nanophotonics5, 96–111 (2016).

    Google Scholar 

  • 16.

    Khurgin, J. B. Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics9, 453–471 (2020).

    Google Scholar 

  • 17.

    Khurgin, J. B. & Levy, U. Generating hot carriers in plasmonic nanoparticles: when quantization does matter? ACS Photonics7, 547–553 (2020).

    Google Scholar 

  • 18.

    Bauer, M., Marienfeld, A. & Aeschlimann, M. Hot electron lifetimes in metals probed by time-resolved two-photon photoemission. Prog. Surf. Sci.90, 319–376 (2015).

    ADS  Google Scholar 

  • 19.

    Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano10, 6108–6115 (2016).

    Google Scholar 

  • 20.

    Seemala, B. et al. Plasmon-mediated catalytic O2 dissociationon Ag nanostructures: hot electrons or near fields? ACS Energy Lett.4, 1803–1809 (2019).

    Google Scholar 

  • 21.

    Aslam, U., Govind Rao, V., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal.1, 656–665 (2018).

    Google Scholar 

  • 22.

    Sivan, Y., Wai Un, I. & Dubi, Y.Thermal effect—an alternative mechanism for plasmonic assisted photo-catalysis. Chem. Sci11, 5017–5027 (2020).

    Google Scholar 

  • 23.

    Dubi, Y. & Sivan, Y. “Hot” electrons in metallic nanostructures—non-thermal carriers or heating? Light.: Sci. Appl.8, 89 (2019).

    ADS  Google Scholar 

  • 24.

    Sivan, Y., Wai Un, I. & Dubi, Y. Assistance of metal nanoparticles in photocatalysis—nothing more than a classical heat source. Faraday Discuss.214, 215–233 (2019).

    ADS  Google Scholar 

  • 25.

    Adleman, J. R., Boyd, D. A., Goodwin, D. G. & Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett.9, 4417–4423 (2009).

    ADS  Google Scholar 

  • 26.

    Li, K. et al. Balancing near-field enhancement, absorption, and scattering for effective antenna reactor plasmonic photocatalysis. Nano Lett.17, 3710–3717 (2017).

    ADS  Google Scholar 

  • 27.

    Maley, M., Hill, J. W., Saha, P., Walmsley, J. D. & Hill, C. M. The role of heating in the electrochemical response of plasmonic nanostructures under illumination. J. Phys. Chem. C. https://doi.org/10.1021/acs.jpcc.9b01479 (2019).

  • 28.

    Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc.136, 64–67 (2014).

    Google Scholar 

  • 29.

    Baffou, G., Rigneault, H., Marguet, D. & Jullien, L. A critique of methods for temperature imaging in single cells. Nat. Methods11, 899–901 (2014).

    Google Scholar 

  • 30.

    Baffou, G., Rigneault, H., Marguet, D. & Jullien, L. Reply to: “Validating subcellular thermal changes revealed by fluorescent thermosensors” and “The 105 gap issue between calculation and measurement in single-cell thermometry”. Nat. Methods12, 803 (2015).

    Google Scholar 

  • 31.

    Christopher, P., Xin, H. L., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater.11, 1044–1050 (2012).

    ADS  Google Scholar 

  • 32.

    Olsen, T. & Schiotz, J. Origin of power laws for reactions at metal surfaces mediated by hot electrons. Phys. Rev. Lett.103, 238301 (2009).

    ADS  Google Scholar 

  • 33.

    Busch, D. G. & Ho, W. Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys. Rev. Lett.77, 1338–1341 (1996).

    ADS  Google Scholar 

  • 34.

    Gadzuk, J. W. Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption. Chem. Phys.251, 87–97 (2000).

    Google Scholar 

  • 35.

    Hyun Kim, K., Watanabe, K., Mulugeta, D., Freund, H. J. & Menzel, D. Enhanced photoinduced desorption from metal nanoparticles by photoexcitation of confined hot electrons using femtosecond laser pulses. Phys. Rev. Lett.11, 1044–1050 (2011).

    Google Scholar 

  • 36.

    Hu, C. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc.141, 7807 (2019).

    Google Scholar 

  • 37.

    Misewich, J. A., Heinz, T. F. & Newns, D. M. Desorption induced by multiple electronic transitions. Phys. Rev. Lett.68, 3737–3740 (1992).

    ADS  Google Scholar 

  • 38.

    Zhan, C. et al. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Natcommun10, 2671 (2019).

  • 39.

    Wang, Y. et al. Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures. Faraday Discuss.214, 325 (2019).

    ADS  Google Scholar 

  • 40.

    C. Zhang et al. Al–Pd nanodisk heterodimers as antenna–reactor photocatalysts. Nano Lett. 16, 6677–6682 (2016).

  • 41.

    Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic phototcatalysis. Science362, 69–72 (2018).

    ADS  Google Scholar 

  • 42.

    Kamarudheen, R., Catellanos, G. W., Kamp, L. J. P., Clercx, H. J. H. & Baldi, A. Quantifying photothermal and hot charge carrier effects in plasmon-driven nanoparticle syntheses. ACS Nano12, 8447–8455 (2018).

    Google Scholar 

  • 43.

    Baffou, G. et al. Photoinduced heating of nanoparticle arrays. ACS Nano7, 6478–6488 (2013).

    Google Scholar 

  • 44.

    Hu, C. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc.141, 7807 (2019).

    Google Scholar 

  • 45.

    Li, C. et al. Long-range plasmon field and plasmoelectric effect on catalysis revealed by shell-thickness-tunable pinhole-free Au@SiO2 core–shell nanoparticles: a case study of p-nitrophenol reduction. ACS Catal.7, 5391–5398 (2017).

    Google Scholar 

  • 46.

    Shalaev, V. M., Douketis, C., Stuckless, J. T. & Moskovits, M. Light-induced kinetic effects in solids. Phys. Rev. B53, 11388–11402 (1996).

    ADS  Google Scholar 

  • 47.

    Govorov, A. O. et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett.1, 84 (2006).

    ADS  Google Scholar 

  • 48.

    Sivan, Y., Baraban, J., Wai Un, I. & Dubi, Y. Comment on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis”. Science364, eaaw9367 (2019).

    ADS  Google Scholar 

  • 49.

    Zhou, L. et al. Response to comment on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis”. Science364, eaaw9545 (2019).

    Google Scholar 

  • 50.

    Sivan, Y., Baraban, J. & Dubi, Y. Eppur si riscalda – and yet, it (just) heats up: further comments on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Preprint at https://arxiv.org/abs/1907.04773 (2019).

  • 51.

    Shahsafi, A. et al. Wide-angle spectrally selective absorbers and thermal emitters based on inverse opals. ACS Photonics6, 2607–2611 (2019).

    Google Scholar 

  • 52.

    Tagliabue, G., Eghlidi, H. & Poulikakos, D. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber. Sci. Rep.4, 7181 (2014).

    ADS  Google Scholar 

  • 53.

    Virk, M., Xiong, K., Svedendahl, M., Käll, M. & Dahlin, A. B. A thermal plasmonic sensor platform: resistive heating of nanohole arrays. Nano Lett.14, 3544–3549 (2014).

    ADS  Google Scholar 

  • 54.

    Hsun Hung, W., Aykol, M., Valley, D., Hou, W. & Cronin, S. B. Plasmon resonant enhancement of carbon monoxide catalysis. Nanoletters10, 1314–1318 (2010).

    ADS  Google Scholar 

  • 55.

    Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano7, 42–49 (2013).

    Google Scholar 

  • 56.

    Zhang, X. et al. Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett.18, 1714–1723 (2018).

    ADS  Google Scholar 

  • 57.

    Schaadt, D. M., Feng, B. & Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett.86, 063106 (2005).

    ADS  Google Scholar 

  • 58.

    Hägglund, C., Zäch, M., P, G. & Kasemo, B. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl. Phys. Lett.92, 053110 (2008).

    ADS  Google Scholar 

  • 59.

    Chen, S. C. et al. Toward omnidirectional light absorption by plasmonic effect for high-efficiency flexible nonvacuum Cu(In,Ga)Se2 thin film solar cells. ACS Nano8, 9341–9348 (2014).

    Google Scholar 

  • 60.

    Tagliabue, G. et al. Quantifying the role of surface plasmon excitationand hot carrier transport in plasmonic devices. Nat. Commun.9, 3394 (2018).

    ADS  Google Scholar 

  • 61.

    Pillai, S. & Green, M. A. Plasmonics for photovoltaic applications. Sol. Energy Mater. Sol. Cells94, 1481–1486 (2010).

    Google Scholar 

  • 62.

    Uneo, K., Oshikiri, T., Sun, Q., Shi, X. & Misawa, H. Solid-state plasmonic solar cells. Chem. Rev.118, 2955–2993 (2018).

    Google Scholar 

  • 63.

    Vernon, S. M. & Anderson, W. A. Temperature effects in Schottky-barrier silicon solar cells. Appl. Phys. Lett.26, 707 (1975).

    ADS  Google Scholar 

  • 64.

    Meneses-Rodríguez, D., Horley, P. P., González-Hernández, J., Vorobiev, Y. V. & Gorley, P. N. Photovoltaic solar cells performance at elevated temperatures. Sol. Energy78, 243–250 (2005).

    ADS  Google Scholar 

  • 65.

    Baffou, G., Polleux, J., Rigneault, H. & Monneret, S. Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination. J. Phys. Chem. C118, 4890 (2014).

    Google Scholar 

  • 66.

    Namura, K., Nakajima, K. & Suzuki, M. Quasi-stokeslet Induced by thermoplasmonic Marangoni effect around a water vapor microbubble. Sci. Rep.7, 45776 (2017).

    ADS  Google Scholar 

  • 67.

    Metwally, K., Mensah, S. & Baffou, G. Isosbestic thermoplasmonic nanostructures. ACS Photonics4, 1544–1551 (2018).

    Google Scholar 

  • 68.

    Verschuuren, M. A., Megens, M., Ni, Y., van Sprang, H. & Polman, A. Large area nanoimprint by substrate conformal imprint lithography (SCIL). Adv. Opt. Technol.6, 243–264 (2017).

    ADS  Google Scholar 

  • 69.

    Fredriksson, H. et al. Hole–Mask colloidal lithography. Adv. Mater.19, 4297–4302 (2007).

    Google Scholar 

  • 70.

    Syrenova, S., Wadell, C. & Langhammer, C. Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas. Nano Lett.14, 2655–2663 (2014).

    ADS  Google Scholar 

  • 71.

    Liu, S. et al. In situ plasmonic nanospectroscopy of the CO oxidation reaction over single Pt nanoparticles. ACS Nano13, 6090–6100 (2019).

    Google Scholar 

  • 72.

    Bu, Y., Niemantsverdriet, J. W. H. & Fredriksson, H. O. A. Cu model catalyst dynamics and CO oxidation kinetics studied by simultaneous in situ UV–Vis and mass spectroscopy. ACS Catal.6, 2867–2876 (2016).

    Google Scholar 

  • 73.

    Quintanilla, M. & Liz-Marzán, L. M. Guiding rules for selecting a nanothermometer. Nano Today19, 126–145 (2018).

    Google Scholar 

  • 74.

    Baffou, G. Thermoplasmonics: Heating Metal Nanoparticules Using Light Ch. 4 (Cambridge Unversity Press, 2017).

  • 75.

    Hu, S. et al. Quantifying surface temperature of thermoplasmonic nanostructures. J. Am. Chem. Soc.140, 13680–13686 (2018).

    Google Scholar 

  • 76.

    Carattino, A., Caldarola, M. & Orrit, M. Gold nanoparticles as absolute nanothermometers. Nano Lett.18, 874–880 (2018).

    ADS  Google Scholar 

  • 77.

    Savchuk, O. A. et al. Ho,Yb:KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry. J. Phys. Chem. C119, 18546–18558 (2015).

    Google Scholar 

  • 78.

    Rohani, S. et al. Enhanced luminescence, collective heating, and nanothermometry in an ensemble system composed of lanthanide-doped upconverting nanoparticles and gold nanorods. Adv. Opt. Mater.3, 1606–1613 (2015).

    Google Scholar 

  • 79.

    Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science285, 1042–1045 (1999).

    Google Scholar 

  • 80.

    Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun.8, 14542 (2017).

    ADS  Google Scholar 

  • 81.

    Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science339, 1590–1593 (2013).

    ADS  Google Scholar 

  • 82.

    Zhou, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy5, 61–70 (2020).

    ADS  Google Scholar 

  • 83.

    Baffou, G., Quidant, R. & Garcia de Abajo, F. J. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano4, 709 (2010).

    Google Scholar 

  • 84.

    Keller, E. L. & Frontiera, R. R. Ultrafast nanoscale raman thermometry proves heating is not a primary mechanism for plasmon-driven photocatalysis. ACS Nano12, 5848–5855 (2018).

    Google Scholar 

  • 85.

    Hrelescu, C. et al. DNA melting in gold nanostove clusters. J. Phys. Chem. C114, 7401–7411 (2010).

    Google Scholar 

  • 86.

    Jin, H., Lin, G., Bai, L., Zeiny, A. & Wen, D.Steam generation in a nanoparticle-based solar receiver. Nano Energy28, 397–406 (2016).

    Google Scholar 

  • 87.

    Richardson, H. H., Carlson, M. T., Tandler, P. J., Hernandez, P. & Govorov, A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett.9, 1139–1146 (2009).

    ADS  Google Scholar 

  • 88.

    Baffou, G. & Rigneault, H. Femtosecond-pulsed optical heating of gold nanoparticles. Phys. Rev. B84, 035415 (2011).

    ADS  Google Scholar 

  • 89.

    Swearer, D. F. et al. Heterometallic antenna reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA113, 8916–8920 (2016).

    ADS  Google Scholar 

  • 90.

    Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science349, 632–635 (2015).

    ADS  Google Scholar 

  • 91.

    Bardey, S. et al. Plasmonic photocatalysis applied to solar fuels. Faraday Discuss.214, 417 (2019).

    ADS  Google Scholar 

  • 92.

    Yen, C. W. & El-Sayed, M. A. Plasmonic field effect on the hexacyanoferrate (III)—thiosulfate electron transfer catalytic reaction on gold nanoparticles: electromagnetic or thermal? J. Phys. Chem. C113, 19585–19590 (2009).

    Google Scholar 

  • 93.

    Bora, T., Zoepfl, D. & Dutta, J. Importance of plasmonic heating on visible light driven photocatalysis of gold nanoparticle decorated zinc oxide nanorods. Sci. Rep.6, 26913 (2016).

    ADS  Google Scholar 

  • 94.

    Baffou, G. Thermoplasmonics. Heating Metal Nanoparticles Using Light (Cambridge University Press, 2017).

  • 95.

    Yu, Y., Sundaresan, V. & Willets, K. A. Hot carriers versus thermal effects: resolving the enhancement mechanisms for plasmon mediated photoelectrochemical reactions. J. Phys. Chem. C122, 5040–5048 (2018).

    Google Scholar 

  • 96.

    Sarhan, R. M. et al. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol. Sci. Rep.9, 3060 (2019).

    ADS  Google Scholar 

  • 97.

    Li, X., Everitt, H. O. & Liu, J. Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts. Nano Res.12, 1906–1911 (2019).

    Google Scholar 

  • 98.

    Jain, P. K. Taking the heat off of plasmonic chemistry. J. Phys. Chem. C123, 24347–24351 (2019).

    Google Scholar 

  • 99.

    Zhang, Q. et al. Photothermal effect, local field dependence, and charge carrier relaying species in plasmon-driven photocatalysis: a case study of aerobic nitrothiophenol coupling reaction. J. Phys. Chem. C123, 26695–26704 (2019).

    Google Scholar 

  • 100.

    Rodio, M. et al. Experimental evidence for nonthermal contributions to plasmon-enhanced electrochemical oxidation reactions. ACS Catal.10, 2345 (2020).

    Google Scholar 

  • 101.

    Ou, W. et al. Thermal and nonthermal effects in plasmon-mediated electrochemistry at nanostructured Ag electrodes. Angew. Chem. Int. Ed.59, 1 (2020).

    Google Scholar 

  • 102.

    Schorr, N. B., Counihan, M. J., Bhargava, R. & Rodríguez-Loṕez, J. Impact of plasmonic photothermal effects on the reactivity of Au nanoparticle modified graphene electrodes visualized using scanning electrochemical microscopy. Anal. Chem.92, 3666–3673 (2020).

    Google Scholar 

  • 103.

    Sivan, Y., Baraban, J. & Dubi, Y. Experimental practices required to isolatethermal effects in plasmonic photo-catalysis:lessons from recent experiments. OSA Contin.3, 483 (2020).

    Google Scholar 

  • 104.

    Baffou, G., Quidant, R. & Girard, C. Thermoplasmonics modeling: a Green’s function approach. Phys. Rev. B82, 165424 (2010).

    ADS  Google Scholar 

  • Source