• 1.

    Price, P. W. et al. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev. Ecol. Syst. 11, 41–65 (1980).

  • 2.

    Levin, D. A. The role of trichomes in plant defence. Q Rev. Biol. 48, 3–15 (1973).

  • 3.

    Southwood, R. Plant Surfaces and Insects—An Overview. 1–22 (Arnold, 1986).

  • 4.

    Mauricio, R. Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am. Nat. 151, 20–28 (1998).

  • 5.

    Handley, R., Ekbom, B. & Ågren, J. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol. Entomol. 30, 284–292 (2005).

  • 6.

    Plett, J. M., Wilkins, O., Campbell, M. M., Ralph, S. G. & Regan, S. Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth. Plant J. 64, 419–432 (2010).

  • 7.

    Valverde, P. L., Fornoni, J. & Nuñez-Farfán, J. Defensive role of leaf trichomes in resistance to herbivorous insects in Datura stramonium. J. Evol. Biol. 14, 424–432 (2001).

  • 8.

    Duffey, S. S. Plant Glandular Trichomes: Their Partial Role in Defence Against Insects. 151–172 (Edward Arnold, 1986).

  • 9.

    Cortesero, A. M., Stapel, J. O. & Lewis, W. J. Understanding and manipulating plant attributes to enhance biological control. Biol. Control 17, 35–49 (2000).

  • 10.

    Kauffman, W. C. & Kennedy, G. G. Relationship between trichome density in tomato and parasitism of Heliothis spp. (Lepidoptera: Noctuidae) eggs by Trichogramma spp. (Hymenoptera: Trichogrammatidae). Environ. Entomol. 18, 698–704 (1989).

  • 11.

    Kennedy, G. G. Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev. Entomol. 48, 51–72 (2003).

  • 12.

    Simmons, A. T. & Gurr, G. M. Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agr. For. Entomol. 7, 265–276 (2005).

  • 13.

    Walter, D. E. Living on leaves: mites, tomenta, and leaf domatia. Annu Rev. Entomol. 41, 101–114 (1996).

  • 14.

    Schmidt, R. Leaf structures affect predatory mites (Acari: Phytoseiidae) and biological control: a review. Exp. Appl Acarol. 62, 1–17 (2014).

  • 15.

    Camporese, P. & Duso, C. Different colonization patterns of phytophagous and predatory mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: a case study. Exp. Appl Acarol. 20, 1–22 (1996).

  • 16.

    Krips, O. E., Kleijn, P. W., Willems, P. E. L., Gols, G. J. Z. & Dicke, M. Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp. Appl Acarol. 23, 119–131 (1999).

  • 17.

    Seelmann, L., Auer, A., Hoffmann, D. & Schausberger, P. Leaf pubescence mediates intraguild predation between predatory mites. Oikos 116, 807–817 (2007).

  • 18.

    Pemberton, R. W. & Turner, C. E. Occurrence of predatory and fungivorous mites in leaf domatia. Am. J. Bot. 76, 105–112 (1989).

  • 19.

    Brouwer, Y. M., Clifford, H. T. & Gregory, M. An Annotated List of Domatia-Bearing Species. (Royal Botanic Gardens, Jodrell Laboratory, 1990).

  • 20.

    Walter, D. E. & O’Dowd, D. J. (eds). Life on the Forest Phylloplane: Hairs, Little Houses, and Myriad Mites. 325–351 (Academic Press, 1995)

  • 21.

    Hoy, M. in Agricultural acarology: Introduction to Integrated Mite Management 59–184 (Taylor and Francis Group, LLC, 2011).

  • 22.

    Duso, C., Pozzebon, A., Kreiter, S., Tixier, M. & Candolfi, M. Management of Phytophagous Mites in European VIneyards. 191–217 (Springer, 2012).

  • 23.

    English-Loeb, G., Norton, A. P., Gadoury, D., Seem, R. & Wilcox, W. Biological control of grape powdery mildew using Mycophagous mites. Plant Dis. 91, 421–429 (2007).

  • 24.

    Loeb, G., Walton, V. & Zalom, F. Mites. 2nd edn (APS Press, 2015).

  • 25.

    Karban, R., English-Loeb, G., Walker, M. A. & Thaler, J. Abundance of phytoseiid mites on Vitis species: effects of leaf hairs, domatia, prey abundance and plant phylogeny. Exp. Appl Acarol. 19, 189–197 (1995).

  • 26.

    English-Loeb, G., Norton, A. P. & Walker, M. A. Behavioral and population consequences of acarodomatia in grapes on phytoseiid mites (Mesostigmata) and implications for plant breeding. Entomol. Exp. Appl. 104, 307–319 (2002).

  • 27.

    Pozzebon, A., Loeb, G. M. & Duso, C. Role of supplemental foods and habitat structural complexity in persistence and coexistence of generalist predatory mites. Sci. Rep. 5, 14997 (2015).

  • 28.

    Roda, A., Nyrop, J., English-Loeb, G. & Dicke, M. Leaf pubescence and two-spotted spider mite webbing influence phytoseiid behavior and population density. Oecologia 129, 551–560 (2001).

  • 29.

    Duso, C., Pasqualetto, C. & Camporese, P. Role of the predatory mites Amblyseius aberrans (Oud.), Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari, Phytoseiidae) in vineyards. J. Appl Entomol. 112, 298–308 (1991).

  • 30.

    Loughner, R., Goldman, K., Loeb, G. & Nyrop, J. Influence of leaf trichomes on predatory mite (Typhlodromus pyri) abundance in grape varieties. Exp. Appl Acarol. 45, 111–122 (2008).

  • 31.

    Loughner, R., Wentworth, K., Loeb, G. & Nyrop, J. Influence of leaf trichomes on predatory mite density and distribution in plant assemblages and implications for biological control. Biol. Control 54, 255–262 (2010).

  • 32.

    Pattanaik, S., Patra, B., Singh, S. K. & Yuan, L. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Front Plant Sci. 5, 259 (2014).

  • 33.

    Hauser, M.-T. Molecular basis of natural variation and environmental control of trichome patterning. Front Plant Sci. 5, 320 (2014).

  • 34.

    Agren, J. & Schemske, D. W. Artificial selection on trichome number in Brassica rapa. Theor. Appl Genet 83, 673–678 (1992).

  • 35.

    Shockley, F. W. & Backus, E. A. Repellency to the potato leafhopper (Homoptera: Cicadellidae) by erect glandular trichomes on alfalfa. Environ. Entomol. 31, 22–29 (2002).

  • 36.

    Chitwood, D. H. et al. A modern ampelography: a genetic basis for leaf shape and venation patterning in grape. Plant Physiol. 164, 259–272 (2014).

  • 37.

    Vitulo, N. et al. A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype. BMC Plant Biol. 14, 99 (2014).

  • 38.

    Divilov, K., Wiesner-Hanks, T., Barba, P., Cadle-Davidson, L. & Reisch, B. I. Computer vision for high-throughput quantitative phenotyping: a case study of grapevine downy mildew sporulation and leaf trichomes. Phytopathology 107, 1549–1555 (2017).

  • 39.

    Fechter, I. et al. Candidate genes within a 143 kb region of the flower sex locus in Vitis. Mol. Genet Genom. 287, 247–259 (2012).

  • 40.

    Mahanil, S. et al. Development of marker sets useful in the early selection of Ren4 powdery mildew resistance and seedlessness for table and raisin grape breeding. Theor. Appl. Genet. 124, 23–33 (2012).

  • 41.

    Barba, P. et al. Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor. Appl. Genet. 127, 73–84 (2014).

  • 42.

    Mejia, N. et al. Identification of QTLs for seedlessness, berry size, and ripening date in a. seedless x seedless table grape progeny. Am. J. Enol. Viticul 58, 499–507 (2007).

  • 43.

    Correa, J. et al. Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor. Appl. Genet. 127, 1143–1162 (2014).

  • 44.

    Loughner, R., Wentworth, K., Loeb, G. & Nyrop, J. Leaf trichomes influence predatory mite densities through dispersal behavior. Entomol. Exp. Appl. 134, 78–88 (2010).

  • 45.

    IPGRI, UPOV & OIV. Descriptors for Grapevine (Vitis spp.). International Union for the Protection of New Varieties of Plants, Geneva, Switzerland/Office International de la Vigne et du Vin, Paris, France/International Plant Genetic Resources Institute, Rome, Italy. 142, 4 (1997).

  • 46.

    Hyma, K. E. et al. Heterozygous mapping strategy (HetMappS) for high resolution genotyping-by-sequencing markers: A case study in grapevine. PLoS ONE 10, e0134880 (2015).

  • 47.

    Elshire, R. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).

  • 48.

    Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).

  • 49.

    Adam-Blondon, A.-F. et al. in Genetics, Genomics and Breeding of Grapes (eds Adam-Blondon, A.-F., Martinez-Zapater, J. M., & Chittaranjan, Kole) (Science Publishers, 2011).

  • 50.

    Glaubitz, J. C. et al. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9, e90346 (2014).

  • 51.

    Grattapaglia, D. & Sederoff, R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137, 1121–1137 (1994).

  • 52.

    Broman, K. W., Wu, H., Sen, Ś. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).

  • 53.

    R Development Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2011).

  • 54.

    Broman, K. W. & Sen, S. A Guide to QTL Mapping with R/qtl. Vol. 46 (Springer, 2009).

  • 55.

    Dag, O., Asar, O. & Ilk, O. AID: An R Package to Estimate Box-Cox Power Transformation Parameter. (R package version, 2014).

  • 56.

    Dai, X. et al. TrichOME: a comparative omics database for plant trichomes. Plant Physiol. 152, 44–54 (2010).

  • 57.

    Altschul, S. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

  • 58.

    Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

  • Source