• 1.

    Liang, X., Ma, J., Schatten, H. & Sun, Q. Epigenetic changes associated with oocyte aging. Sci. China. Life. Sci. 55(8), 670–676 (2012).

  • 2.

    Lahnsteiner, F., Urbanyi, B., Horvath, A. & Weismann, T. Bio-markers for egg quality determination in cyprinid fish. Aquaculture 195, 331–352 (2001).

  • 3.

    Samarin, A. M. et al. Effects of post-ovulatory oocyte ageing and temperature on egg quality in kutum Rutilus frisii kutum. World. Appl. Sci. J. 15(1), 14–18 (2011).

  • 4.

    Flajshans, M., Kohlmann, K. & Rab, P. Autotriploid tench Tinca tinca (L.) larvae obtained by fertilization of eggs previously subjected to postovulatory ageing in vitro and in vivo. J. Fish Biol. 71, 868–876 (2007).

  • 5.

    Aegerter, S. & Jalabert, B. Effects of post ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout Oncorhynchus mykiss. Aquaculture 231, 59–71 (2004).

  • 6.

    Bonnet, E., Fostier, A. & Bobe, J. Characterization of rainbow trout egg quality: a case study using four different breeding protocols, with emphasis on the incidence of embryonic malformations. Theriogenology 67, 786–794 (2007a).

  • 7.

    Samarin, A. M. et al. In vitro storage of unfertilized eggs of the Eurasian perch and its effect on egg viability rates and the occurrence of larval malformations. Animal 11(1), 78–83 (2017).

  • 8.

    Tarin, J. J., Perez-Albala, S., Perez-Hoyos, P. & Cano, A. Postovulatory aging of oocytes decreases reproductive fitness and longevity of offspring. Biol. Reprod. 66, 495–499 (2002).

  • 9.

    Liang, X. W. et al. The effects of postovulatory aging of mouse oocytes on methylation and expression of imprinted genes at midterm gestation. Mol. Hum. Reprod. 17, 562–567 (2011).

  • 10.

    Liang, X. W. et al. Loss of methylation imprint of Snrpn in postovulatory aging mouse oocyte. Biochem. Biophys. Res. Commun. 371, 16–21 (2008).

  • 11.

    Minami, N., Suzuki, T. & Tsukamoto, S. Zygotic gene activation and maternal factors in mammals. J. Reprod. Dev. 53, 707–715 (2007).

  • 12.

    Yoshida, N., Brahmajisyula, M., Shoji, S., Amanai, M. & Perry, A. C. Epigenetic discrimination by mouse metaphase II oocytes mediated asymmetric chromatin remodelling independently of meiotic exit. Dev. Biol. 301, 464–477 (2007).

  • 13.

    Samarin, A. M., Policar, T. & Lahnsteiner, F. Fish oocyte ageing and its effect on egg quality. Rev. Fish. Sci. Aquac. 23, 302–314 (2015).

  • 14.

    Zuccotti, M., Merico, V., Cecconi, S., Redi, C. A. & Garagna, S. What does it take to make a developmentally competent mammalian egg? Hum. Reprod. Update 17, 525–540 (2011).

  • 15.

    Bonnet, E., Fostier, A. & Bobe, J. Microarray-based analysis of fish egg quality after natural or controlled ovulation. BMC Genomics 8, 55 (2007b).

  • 16.

    Aegerter, S., Jalabert, B. & Bobe, J. MessengerRNAstockpile of cyclin B, insulin-like growth factor I, insulin-like growth factor II, insulinlike growth factor receptor Ib, and p53 in the rainbow trout oocyte in relation with developmental competence. Mol. Reprod. Dev. 67, 127–135 (2004).

  • 17.

    Aegerter, S., Jalabert, B. & Bobe, J. Large scale real-time PCR analysis of mRNA abundance in rainbow trout eggs in relationship with egg quality and postovulatory ageing. Mol. Reprod. Dev. 72, 377–385 (2005).

  • 18.

    Mommens, M. et al. Maternal gene expression in Atlantic halibut (Hippoglossus hippoglossus L.) and its relation to egg quality. BMC Res Notes 3, 138 (2010).

  • 19.

    Ma, H. et al. MicroRNA expression profiles from eggs of different qualities associated with post-ovulatory ageing in rainbow trout (Oncorhynchus mykiss). BMC Genomics 16, 201 (2015).

  • 20.

    Lord, T., Nixon, B., Jones, K. T. & Aitken, R. J. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol. Reprod. 88, 1–9 (2013).

  • 21.

    Lord, T. & Aitken, R. J. Oxidative stress and ageing of the post-ovulatory oocyte. Reproduction 146, 217–227 (2013).

  • 22.

    Takahashi, T., Takahashi, E., Igarashi, H., Tezuka, N. & Kurachi, H. Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Mol. Reprod. Dev. 66, 143–152 (2003).

  • 23.

    Tarin, J. J., Perez-Albala, S. & Cano, A. Consequences on offspring of abnormal function in ageing gametes. Hum. Reprod. Update 6, 532–549 (2000).

  • 24.

    Samarin, A. M. et al. mRNA abundance changes during in vitro oocyte ageing in African catfish Clarias gariepinus (Burchell, 1822). Aquac. Res. 49, 1037–1045 (2018).

  • 25.

    Kikuchi, K., Naito, K., Noguchi, J., Kaneko, H. & Tojo, H. Maturation/M-phase promoting factor regulates aging of porcine oocytes matured in vitro. Cloning Stem Cells 4, 211–222 (2002).

  • 26.

    Formacion, M. J., Venkatesh, B., Tan, C. H. & Lam, T. J. Overripening of ovulated eggs in goldfish, Carassius auratus: II. Possible involvement of postovulatory follicles and steroids. Fish Physiol. Biochem. 14(3), 237–246 (1995).

  • 27.

    Grondahl, M. L. et al. Gene expression profiles of single human mature oocytes in relation to age. Hum. Reprod. 25(4), 957–68 (2010).

  • 28.

    Steuerwald, N. M., Bermudez, M. G., Wells, D., Munne, S. & Cohen, J. Maternal age-related differential global expression profiles observed in human oocytes. Reprod. Biomed. Online 14, 700–708 (2007).

  • 29.

    Pan, H., O’Brien, M. J., Wigglesworth, K., Eppig, J. J. & Schultz, R. M. Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and develop¬ment in vitro. Dev. Biol. 286, 493–506 (2005).

  • 30.

    Hamatani, T. et al. Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 13(19), 2263–2278 (2004).

  • 31.

    Esponda, P. & Dıaz, H. Age-induced apoptosis and activation of heat shock protein HSP70 in mammalian oocytes. Signalling and Apoptosis, PP-184a (2006).

  • 32.

    Verbeke, P., Fonager, J., Clark, B. F. & Rattan, S. I. Heat shock response and ageing: mechanisms and applications. Cell Biol. Int. 25, 845–857 (2001).

  • 33.

    Sturtz, L. A., Diekert, K., Jensen, L. T., Lill, R. & Culotta, V. C. A fraction of yeast Cu, Zn superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem. 276, 38084–9 (2001).

  • 34.

    Pechenino, A. S. & Brown, T. R. Superoxide dismutase in the prostate lobes of aging Brown Norway rats. Prostate 66, 522–35 (2006).

  • 35.

    Wesson, D. E. & Elliott, S. J. The H2O2-generating enzyme, xanthine oxidase, decreases luminal Ca2+ content of the IP3- sensitive Ca2+ store in vascular endothelial cells. Microcirculation 2, 195–203 (1995).

  • 36.

    Schallreuter, K. U., Gibbons, N. C., Zothner, C., Abou Elloof, M. M. & Wood, J. M. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: more evidence for oxidative stress in vitiligo. Biochem. Biophys. Res. Commun. 360, 70–75 (2007).

  • 37.

    Takahashi, T. et al. Poor embryo development in mouse oocytes aged in vitro is associated with impaired calcium homeostasis. Biol. Reprod. 80, 493–502 (2009).

  • 38.

    Xu, Z., Abbott, A., Kopf, G. S., Schultz, R. M. & Ducibella, T. Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-triphosphate sensitivity. Biol. Reprod. 57, 743–750 (1997).

  • 39.

    Ma, W. et al. Reduced expression of MAD2, BCL2, and MAP kinase activity in pig oocytes after in vitro aging are associated with defects in sister chromatid segregation during meiosis II and embryo fragmentation after activation. Biol. Reprod. 72, 373–383 (2005).

  • 40.

    Carnevali, O., Mosconi, G., Cardinali, M., Meiri, I. & Polzonetti-Magni, A. Molecular components related to egg viability in the gilthead sea bream, Sparus aurata. Mol. Reprod. Dev. 58(3), 330–5 (2001).

  • 41.

    Raz, E. The function and regulation of vasa-like genes in germ-cell development. Genome Biol. 1(3), reviews1017 (2000).

  • 42.

    Nikolic, A., Volarevic, V., Armstrong, L., Lako, M. & Stojkovic, M. Primordial germ cells: current knowledge and perspectives. Stem Cells Int. 1741072 (2016).

  • 43.

    Tzung, K. W. et al. Early Depletion of Primordial Germ Cells in Zebrafish Promotes Testis Formation. Stem Cell Reports 4(1), 61–73 (2015).

  • 44.

    Liu, W. et al. Complete depletion of primordial germ cells in an All-female fish leads to Sex-biased gene expression alteration and sterile All-male occurrence. BMC Genomics 16, 971 (2015).

  • 45.

    Houseweart, M. K. et al. Cathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht-Lundborg progressive myoclonus epilepsy (EPM1). J. Neurobiol. 56(4), 315–327 (2003).

  • 46.

    Kågedal, K., Johansson, U. & Öllinger, K. The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J. 15, 1592–1594 (2001).

  • 47.

    Samarin, A. M. et al. Alteration of mRNA abundance, oxidation products and antioxidant enzyme activities during oocyte ageing in common carp Cyprinus carpio. PLoS One 14(2), e0212694, https://doi.org/10.1371/journal.pone.0212694 (2019).

  • 48.

    Abe, K., Inoue, A., Suzuki, M. G. & Aoki, F. Global gene silencing is caused by the dissociation of RNA polymerase II from DNA in mouse oocytes. J. Reprod. Dev. 56, 502–507 (2010).

  • 49.

    Clarke, H. J. Post-transcriptional control of gene expression during mouse oogenesis. Results. Probl. Cell. Differ. 55, 1–21 (2012).

  • 50.

    Weill, L., Belloc, E., Bava, F. A. & Mendez, R. Translational control by changes in poly(A) tail length: recycling mRNAs. Nat. Struct. Mol. Biol. 19, 577–585 (2012).

  • 51.

    Dankert, D. et al. Pre- and postovulatory aging of murine oocytes affect the transcript level and poly(A) tail length of maternal effect genes. PLoS One 9, e108907 (2014).

  • 52.

    Wilson, V. L. & Jones, P. A. DNA methylation decreases in aging but not in immortal cells. Science. 220, 1055–1057 (1983).

  • 53.

    Crary-Dooley, F. K. et al. A comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing for epidemiological studies. Epigenetics. 12, 206–214 (2017).

  • 54.

    McCauley, B. S. & Dang, W. Histone methylation and aging: lessons learned from model systems. Biochem. Biophys. Acta. 1839(12), 1454–62 (2014).

  • 55.

    Xu, Y., Zhang, J. J., Grifo, J. A. & Krey, L. C. DNA methylation patterns in human tripronucleate zygotes. Mol. Hum. Reprod. 11, 167–171 (2004).

  • 56.

    Ge, Z. J., Schatten, H., Zhang, C. L. & Sun, Q. Y. Oocyte ageing and epigenetics. Reproduction. 149, R103–R114 (2015).

  • 57.

    Kjorsvik, E., Mangor-Jensen, A. & Holmefjord, I. Egg quality in fishes. Adv. Mar. boil. 26, 71–113 (1990).

  • 58.

    Brooks, S., Tyler, C. R. & Sumpter, J. P. Egg quality in fish: what makes a good egg? Rev. Fish. Biol. Fisher. 7, 387–416 (1997).

  • 59.

    Flanagan, J. M. et al. Intra-and interindividual epigenetic variation in human germ cells. Am. J. Hum. Genet. 79, 67–84 (2006).

  • 60.

    Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell. 128, 635–638 (2007).

  • 61.

    Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

  • 62.

    Fauvel, C., Suquet, M. & Cosson, J. Evaluation of fish sperm quality. J. Appl. Ichthyol. 26, 636–643 (2010).

  • 63.

    Koressaar, T. & Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10), 1289–1291 (2007).

  • 64.

    Untergasser, A. et al. Primer3 – new capabilities and interfaces. Nucleic Acids Res. 40(15), e115 (2012).

  • 65.

    Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985).

  • 66.

    Claiborne, A. Catalase activity. In Greenwall, R. A. (Ed.), CRC handbook of methods in oxygen radical research (pp. 283–284). Boca Raton, FL: CRC Press (1985).

  • 67.

    Nishikimi, M., Rao, N. A. & Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46, 849–854 (1972).

  • 68.

    Mohandas, J., Marshall, J. J., Duggin, G. G., Horvath, J. S. & Tiller, D. J. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney – possible implications in analgesic nephropathy. Biochem. Pharmacol. 33, 1801–1807 (1984).

  • 69.

    Cribb, A. E., Leeder, J. S. & Spielberg, S. P. Use of a microplate reader in an assay of glutathione-reductase using 5,5′-dithiobis (2-nitrobenzoic acid). Anal. Biochem. 183, 195–196 (1989).

  • 70.

    Li, P. et al. Evaluating the impacts of osmotic and oxidative stress on common carp (Cyprinus carpio L.) sperm caused by cryopreservation techniques. Biol. Reprod. 83, 852–858 (2010).

  • Source