• 1.

    Planul, A. & Dalkara, D. Vectors and gene delivery to the retina. Annu. Rev. Vis. Sci. 3, 121–140 (2017).

  • 2.

    Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72, 8568–8577 (1998).

  • 3.

    Penaud-Budloo, M. et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J. Virol. 82, 7875–7885 (2008).

  • 4.

    Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

  • 5.

    Palfi, A. et al. Efficacy of codelivery of dual AAV2/5 vectors in the murine retina and hippocampus. Hum. Gene Ther. 23, 847–858 (2012).

  • 6.

    Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

  • 7.

    Oh, M. S., Hong, S. J., Huh, Y. & Kim, K.-S. Expression of transgenes in midbrain dopamine neurons using the tyrosine hydroxylase promoter. Gene Ther. 16, 437–440 (2009).

  • 8.

    Khabou, H. et al. Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight 3, 96029 (2018).

  • 9.

    Cronin, T. et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol. Med. 6, 1175–1190 (2014).

  • 10.

    Nathanson, J. L. et al. Short promoters in viral vectors drive selective expression in mammalian inhibitory neurons, but do not restrict activity to specific inhibitory cell-types. Front. Neural Circuits 3, 19 (2009).

  • 11.

    Dimidschstein, J. et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 19, 1743–1749 (2016).

  • 12.

    Beltran, W. A. et al. Optimization of retinal gene therapy for X-linked retinitis pigmentosa due to RPGR mutations. Mol. Ther. 25, 1866–1880 (2017).

  • 13.

    Chaffiol, A. et al. A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina. Mol. Ther. 25, 2546–2560 (2017).

  • 14.

    Hanlon, K. S. et al. A novel retinal ganglion cell promoter for utility in AAV vectors. Front. Neurosci. 11, 521 (2017).

  • 15.

    Dashkoff, J. et al. Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9. Mol. Ther. Methods Clin. Dev. 3, 16081 (2016).

  • 16.

    Lu, Q. et al. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. Gene Ther. 23, 680–689 (2016).

  • 17.

    Siegert, S. et al. Transcriptional code and disease map for adult retinal cell types. Nat. Neurosci. 15, 487–495 (2012).

  • 18.

    Hartl, D., Krebs, A. R., Jüttner, J., Roska, B. & Schübeler, D. Cis-regulatory landscapes of four cell types of the retina. Nucleic Acids Res. 45, 11607–11621 (2017).

  • 19.

    Kleinlogel, S. et al. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat. Neurosci. 14, 513–518 (2011).

  • 20.

    Allocca, M. et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J. Virol. 81, 11372–11380 (2007).

  • 21.

    Lebherz, C., Maguire, A., Tang, W., Bennett, J. & Wilson, J. M. Novel AAV serotypes for improved ocular gene transfer. J. Gene Med. 10, 375–382 (2008).

  • 22.

    Grieger, J. C., Choi, V. W. & Samulski, R. J. Production and characterization of adeno-associated viral vectors. Nat. Protoc. 1, 1412–1428 (2006).

  • 23.

    Zhu, X. et al. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors. Mol. Vis. 8, 462–471 (2002).

  • 24.

    Masland, R. H. The fundamental plan of the retina. Nat. Neurosci. 4, 877–886 (2001).

  • 25.

    Wässle, H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757 (2004).

  • 26.

    Haverkamp, S. & Wässle, H. Immunocytochemical analysis of the mouse retina. J. Comp. Neurol. 424, 1–23 (2000).

  • 27.

    Sarthy, V. P. et al. Establishment and characterization of a retinal Müller cell line. Invest. Ophthalmol. Vis. Sci. 39, 212–216 (1998).

  • 28.

    Jeon, C. J., Strettoi, E. & Masland, R. H. The major cell populations of the mouse retina. J. Neurosci. 18, 8936–8946 (1998).

  • 29.

    Ortín-Martínez, A. et al. Number and distribution of mouse retinal cone photoreceptors: differences between an albino (Swiss) and a pigmented (C57/BL6) strain. PLoS One 9, e102392 (2014).

  • 30.

    Rice, D. S. & Curran, T. Disabled-1 is expressed in type AII ACs in the mouse retina. J. Comp. Neurol. 424, 327–338 (2000).

  • 31.

    Sun, W., Li, N. & He, S. Large-scale morphological survey of mouse retinal GCs. J. Comp. Neurol. 451, 115–126 (2002).

  • 32.

    Salinas-Navarro, M. et al. Retinal GC population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution. Vision Res. 49, 637–647 (2009).

  • 33.

    Kwong, J. M. K., Quan, A., Kyung, H., Piri, N. & Caprioli, J. Quantitative analysis of retinal GC survival with Rbpms immunolabeling in animal models of optic neuropathies. Invest. Ophthalmol. Vis. Sci. 52, 9694–9702 (2011).

  • 34.

    Yau, K.-W. & Hardie, R. C. Phototransduction motifs and variations. Cell 139, 246–264 (2009).

  • 35.

    Metea, M. R. & Newman, E. A. Calcium signaling in specialized glial cells. Glia 54, 650–655 (2006).

  • 36.

    Newman, E. A. Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J. Neurosci. 25, 5502–5510 (2005).

  • 37.

    Farber, D. B., Flannery, J. G. & Bowes-Rickman, C. The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Prog. Retin. Eye Res. 13, 31–64 (1994).

  • 38.

    Wikler, K. C., Williams, R. W. & Rakic, P. Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina. J. Comp. Neurol. 297, 499–508 (1990).

  • 39.

    Kolb, H. et al. Are there three types of horizontal cell in the human retina? J. Comp. Neurol. 343, 370–386 (1994).

  • 40.

    Endo, T., Kobayashi, M., Kobayashi, S. & Onaya, T. Immunocytochemical and biochemical localization of parvalbumin in the retina. Cell Tissue Res. 243, 213–217 (1986).

  • 41.

    Smith, R. H. Adeno-associated virus integration: virus versus vector. Gene Ther. 15, 817–822 (2008).

  • 42.

    Weleber, R. G. et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology 123, 1606–1620 (2016).

  • 43.

    Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

  • 44.

    Roska, B. & Sahel, J.-A. Restoring vision. Nature 557, 359–367 (2018).

  • 45.

    Siegert, S. et al. Genetic address book for retinal cell types. Nat. Neurosci. 12, 1197–1204 (2009).

  • 46.

    Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374–378 (2003).

  • 47.

    Mathelier, A. et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44, D110–D115 (2016).

  • 48.

    Byrne, B. J., Davis, M. S., Yamaguchi, J., Bergsma, D. J. & Subramanian, K. N. Definition of the simian virus 40 early promoter region and demonstration of a host range bias in the enhancement effect of the simian virus 40 72-base-pair repeat. Proc. Natl Acad. Sci. USA 80, 721–725 (1983).

  • 49.

    Smith, R. P. et al. Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Nat. Genet. 45, 1021–1028 (2013).

  • 50.

    Busskamp, V. et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413–417 (2010).

  • 51.

    Zhang, H. et al. Identification and light-dependent translocation of a cone-specific antigen, cone arrestin, recognized by monoclonal antibody 7G6. Invest. Ophthalmol. Vis. Sci. 44, 2858–2867 (2003).

  • 52.

    Yonehara, K. et al. The first stage of cardinal direction selectivity is localized to the dendrites of retinal GCs. Neuron 79, 1078–1085 (2013).

  • 53.

    Reiff, D. F., Plett, J., Mank, M., Griesbeck, O. & Borst, A. Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila. Nat. Neurosci. 13, 973–978 (2010).

  • 54.

    Drinnenberg, A. et al. How diverse retinal functions arise from feedback at the first visual synapse. Neuron 99, 117–134.e11 (2018).

  • 55.

    Wertz, A. et al. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349, 70–74 (2015).

  • 56.

    Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

  • 57.

    Strettoi, E., Novelli, E., Mazzoni, F., Barone, I. & Damiani, D. Complexity of retinal cone bipolar cells. Prog. Retin. Eye Res. 29, 272–283 (2010).

  • 58.

    Pérez de Sevilla Müller, L., Azar, S. S., de Los Santos, J. & Brecha, N. C. Prox1 is a marker for aII amacrine cells in the mouse retina. Front. Neuroanat. 11, 39 (2017).

  • 59.

    Snodderly, D. M., Sandstrom, M. M., Leung, I. Y.-F., Zucker, C. L. & Neuringer, M. Retinal pigment epithelial cell distribution in central retina of rhesus monkeys. Invest. Ophthalmol. Vis. Sci. 43, 2815–2818 (2002).

  • 60.

    Martin, P. R. & Grünert, U. Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina. J. Comp. Neurol. 323, 269–287 (1992).

  • 61.

    Wässle, H., Grünert, U., Röhrenbeck, J. & Boycott, B. B. Retinal GC density and cortical magnification factor in the primate. Vision Res. 30, 1897–1911 (1990).

  • 62.

    Kim, C. B. Y., Tom, B. W. & Spear, P. D. Effects of aging on the densities, numbers, and sizes of retinal GCs in rhesus monkey. Neurobiol. Aging 17, 431–438 (1996).

  • 63.

    Jonas, J. B., Schneider, U. & Naumann, G. O. Count and density of human retinal photoreceptors. Graefes Arch. Clin. Exp. Ophthalmol. 230, 505–510 (1992).

  • 64.

    Dreher, Z., Robinson, S. R. & Distler, C. Müller cells in vascular and avascular retinae: a survey of seven mammals. J. Comp. Neurol. 323, 59–80 (1992).

  • 65.

    Curcio, C. A. & Allen, K. A. Topography of GCs in human retina. J. Comp. Neurol. 300, 5–25 (1990).

  • 66.

    Kolb, H., Linberg, K. A. & Fisher, S. K. Neurons of the human retina: a Golgi study. J. Comp. Neurol. 318, 147–187 (1992).

  • 67.

    MacNeil, M. A., Heussy, J. K., Dacheux, R. F., Raviola, E. & Masland, R. H. The shapes and numbers of ACs: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J. Comp. Neurol. 413, 305–326 (1999).

  • Source