• 1.

    Tata, P. R. & Rajagopal, J. Plasticity in the lung: making and breaking cell identity. Development 144, 755–766 (2017).

  • 2.

    Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

  • 3.

    Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).

  • 4.

    Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

  • 5.

    Bisset, L. R. & Schmid-Grendelmeier, P. Chemokines and their receptors in the pathogenesis of allergic asthma: progress and perspective. Curr. Opin. Pulm. Med. 11, 35–42 (2005).

  • 6.

    Colvin, R. A. et al. Synaptotagmin-mediated vesicle fusion regulates cell migration. Nat. Immunol. 11, 495–502 (2010).

  • 7.

    Urawa, M. et al. Protein S is protective in pulmonary fibrosis. J. Thromb. Haemost. 14, 1588–1599 (2016).

  • 8.

    Wujak, A. et al. FXYD1 negatively regulates Na+/K+-ATPase activity in lung alveolar epithelial cells. Respir. Physiol. Neurobiol. 220, 54–61 (2016).

  • 9.

    Krotova, K. et al. Alpha-1 antitrypsin-deficient macrophages have increased matriptase-mediated proteolytic activity. Am. J. Respir. Cell Mol. Biol. 57, 238–247 (2017).

  • 10.

    Vogl, T. et al. S100A12 is expressed exclusively by granulocytes and acts independently from MRP8 and MRP14. J. Biol. Chem. 274, 25291–25296 (1999).

  • 11.

    Mitchell, A. et al. LILRA5 is expressed by synovial tissue macrophages in rheumatoid arthritis, selectively induces pro-inflammatory cytokines and IL-10 and is regulated by TNF-α, IL-10 and IFN-γ. Eur. J. Immunol. 38, 3459–3473 (2008).

  • 12.

    Condon, T. V., Sawyer, R. T., Fenton, M. J. & Riches, D. W. H. Lung dendritic cells at the innate-adaptive immune interface. J. Leukoc. Biol. 90, 883–895 (2011).

  • 13.

    Baumann, U., Routes, J. M., Soler-Palacín, P. & Jolles, S. The lung in primary immunodeficiencies: new concepts in infection and inflammation. Front. Immunol. 9, 1837 (2018).

  • 14.

    Holgate, S. T. et al. Asthma. Nat. Rev. Dis. Primers 1, 15025 (2015).

  • 15.

    Lopez-Guisa, J. M. et al. Airway epithelial cells from asthmatic children differentially express proremodeling factors. J. Allergy Clin. Immunol. 129, 990–997.e6 (2012).

  • 16.

    Alcala, S. E. et al. Mitotic asynchrony induces transforming growth factor-β1 secretion from airway epithelium. Am. J. Respir. Cell Mol. Biol. 51, 363–369 (2014).

  • 17.

    Harkness, L. M., Ashton, A. W. & Burgess, J. K. Asthma is not only an airway disease, but also a vascular disease. Pharmacol. Ther. 148, 17–33 (2015).

  • 18.

    Balzar, S. et al. Mast cell phenotype, location, and activation in severe asthma. Data from the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 183, 299–309 (2011).

  • 19.

    Truyen, E. et al. Evaluation of airway inflammation by quantitative Th1/Th2 cytokine mRNA measurement in sputum of asthma patients. Thorax 61, 202–208 (2006).

  • 20.

    Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

  • 21.

    Erle, D. J. & Sheppard, D. The cell biology of asthma. J. Cell Biol. 205, 621–631 (2014).

  • 22.

    Danahay, H. et al. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep. 10, 239–252 (2015).

  • 23.

    Gomi, K., Arbelaez, V., Crystal, R. G. & Walters, M. S. Activation of NOTCH1 or NOTCH3 signaling skews human airway basal cell differentiation toward a secretory pathway. PLoS ONE 10, e0116507 (2015).

  • 24.

    Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560, 649–654 (2018).

  • 25.

    Luo, W. et al. Airway epithelial expression quantitative trait loci reveal genes underlying asthma and other airway diseases. Am. J. Respir. Cell Mol. Biol. 54, 177–187 (2016).

  • 26.

    Wu, C. A. et al. Bronchial epithelial cells produce IL-5: implications for local immune responses in the airways. Cell. Immunol. 264, 32–41 (2010).

  • 27.

    Laitinen, L. A., Laitinen, A. & Haahtela, T. Airway mucosal inflammation even in patients with newly diagnosed asthma. Am. Rev. Respir. Dis. 147, 697–704 (1993).

  • 28.

    Arima, M. & Fukuda, T. Prostaglandin D2 and TH2 inflammation in the pathogenesis of bronchial asthma. Korean J. Intern. Med. 26, 8–18 (2011).

  • 29.

    Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 (2014).

  • 30.

    Dougherty, R. H. et al. Accumulation of intraepithelial mast cells with a unique protease phenotype in TH2-high asthma. J. Allergy Clin. Immunol. 125, 1046–1053.e8 (2010).

  • 31.

    Hol, B. E., van de Graaf, E. A., Out, T. A., Hische, E. A. & Jansen, H. M. IgM in the airways of asthma patients. Int. Arch. Allergy Appl. Immunol. 96, 12–18 (1991).

  • 32.

    Muehling, L. M., Lawrence, M. G. & Woodfolk, J. A. Pathogenic CD4+ T cells in patients with asthma. J. Allergy Clin. Immunol. 140, 1523–1540 (2017).

  • 33.

    Oja, A. E. et al. Trigger-happy resident memory CD4+ T cells inhabit the human lungs. Mucosal Immunol. 11, 654–667 (2018).

  • 34.

    Mitson-Salazar, A. et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human TH2 cell subpopulation with enhanced function. J. Allergy Clin. Immunol. 137, 907–918.e9 (2016).

  • 35.

    Wambre, E. et al. A phenotypically and functionally distinct human T H2 cell subpopulation is associated with allergic disorders. Sci. Transl. Med. 9, eaam9171 (2017).

  • 36.

    Lam, E. P. S. et al. IL-25/IL-33-responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa. J. Allergy Clin. Immunol. 137, 1514–1524 (2016).

  • 37.

    Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018).

  • 38.

    Weckmann, M., Kopp, M. V., Heinzmann, A. & Mattes, J. Haplotypes covering the TNFSF10 gene are associated with bronchial asthma. Pediatr. Allergy Immunol. 22, 25–30 (2011).

  • 39.

    Harada, M. et al. Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma. Am. J. Respir. Cell Mol. Biol. 44, 787–793 (2011).

  • 40.

    Grotenboer, N. S., Ketelaar, M. E., Koppelman, G. H. & Nawijn, M. C. Decoding asthma: translating genetic variation in IL33 and IL1RL1 into disease pathophysiology. J. Allergy Clin. Immunol. 131, 856–865 (2013).

  • 41.

    Holgate, S. T. et al. Epithelial-mesenchymal communication in the pathogenesis of chronic asthma. Proc. Am. Thorac. Soc. 1, 93–98 (2004).

  • 42.

    Heijink, I. H. et al. Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor-dependent Th2 cell-promoting activity. J. Immunol. 178, 7678–7685 (2007).

  • 43.

    Song, J. et al. Aberrant DNA methylation and expression of SPDEF and FOXA2 in airway epithelium of patients with COPD. Clin. Epigenetics 9, 42 (2017).

  • 44.

    Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

  • 45.

    Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010).

  • 46.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

  • 47.

    van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).

  • 48.

    Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet based single cell RNA sequencing data. Preprint at https://doi.org/10.1101/303727 (2018).

  • 49.

    Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, P281–291.E9 (2019).

  • 50.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

  • 51.

    Mereu, E. et al. matchSCore: matching single-cell phenotypes across tools and experiments. Preprint at https://doi.org/10.1101/314831 (2018).

  • Source