• 1.

    Liang, Z. et al. DNA N(6)-adenine methylation in Arabidopsis thaliana. Dev. Cell 45, 406–416 e403 (2018).

  • 2.

    Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

  • 3.

    Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

  • 4.

    Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69 (2007).

  • 5.

    Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126, 1189–1201 (2006).

  • 6.

    Mondo, S. J. et al. Widespread adenine N6-methylation of active genes in fungi. Nat. Genet. 49, 964–968 (2017).

  • 7.

    Liang, Z. et al. The N(6)-adenine methylation in yeast genome profiled by single-molecule technology. J. Genet. Genom. 45, 223–225 (2018).

  • 8.

    Fu, Y. et al. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161, 879–892 (2015).

  • 9.

    Zhou, C. et al. Identification and analysis of adenine N(6)-methylation sites in the rice genome. Nat. Plants 4, 554–563 (2018).

  • 10.

    Zhang, Q. et al. N(6)-Methyladenine DNA Methylation in Japonica and Indica Rice Genomes and its association with gene expression, plant development and stress responses. Mol. Plant 11, 1492–1508 (2018).

  • 11.

    Zhang, G. et al. N6-methyladenine DNA modification in Drosophila. Cell 161, 893–906 (2015).

  • 12.

    Wu, T. P. et al. DNA methylation on N(6)-adenine in mammalian embryonic stem cells. Nature 532, 329–333 (2016).

  • 13.

    Liu, J. et al. Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat. Commun. 7, 13052 (2016).

  • 14.

    Xiao, C. L. et al. N(6)-methyladenine DNA modification in the human genome. Mol. Cell 71, 306–318 e307 (2018).

  • 15.

    Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

  • 16.

    van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing technology. Trends Genet 34, 666–681 (2018).

  • 17.

    Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).

  • 18.

    Luo, G.-Z., Blanco, M. A., Greer, E. L., He, C. & Shi, Y. DNA N6-methyladenine: a new epigenetic mark in eukaryotes? Nat. Rev. Mol. Cell Biol. 16, 705 (2015).

  • 19.

    Laird, P. W. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet 11, 191–203 (2010).

  • 20.

    Frelon, S. et al. High-performance liquid chromatography–tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem. Res. Toxicol. 13, 1002–1010 (2000).

  • 21.

    Roberts, R. J. & Macelis, D. REBASE—restriction enzymes and methylases. Nucleic Acids Res. 29, 268–269 (2001).

  • 22.

    Jung, S. et al. GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinforma. 5, 130 (2004).

  • 23.

    Farinati, S., Rasori, A., Varotto, S. & Bonghi, C. Rosaceae fruit development, ripening and post-harvest: an epigenetic perspective. Front. Plant Sci. 8, 1247 (2017).

  • 24.

    Jung, S. et al. 15 years of GDR: new data and functionality in the genome database for Rosaceae. Nucleic Acids Res. 47(D1), D1137–D1145 (2018).

  • 25.

    Gu, T., Ren, S., Wang, Y., Han, Y. & Li, Y. Characterization of DNA methyltransferase and demethylase genes in Fragaria vesca. Mol. Genet. Genom. 291, 1333–1345 (2016).

  • 26.

    Cheng, J. et al. Downregulation of RdDM during strawberry fruit ripening. Genome Biol. 19, 212 (2018).

  • 27.

    Ye, P. et al. MethSMRT: an integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing. Nucleic Acids Res. 45, D85–D89 (2017).

  • 28.

    Sood, A. J., Viner, C. & Hoffman, M. M. DNAmod: the DNA modification database. J. Chemin. 11, 30 (2019).

  • 29.

    Edger, P. P. et al. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. Gigascience 7, 1–7 (2018).

  • 30.

    Raymond, O. et al. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 50, 772 (2018).

  • 31.

    Jeltsch, A., Christ, F., Fatemi, M. & Roth, M. On the substrate specificity of DNA methyltransferases. adenine-N6 DNA methyltransferases also modify cytosine residues at position N4. J. Biol. Chem. 274, 19538–19544 (1999).

  • 32.

    Jeltsch, A. The cytosine N4-methyltransferase M.PvuII also modifies adenine residues. Biol. Chem. 382, 707–710 (2001).

  • 33.

    Kodama, Y., Shumway, M. & Leinonen, R., International Nucleotide Sequence Database, C. The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res. 40, D54–D56 (2012).

  • 34.

    Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109–116 (2011).

  • 35.

    Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

  • 36.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

  • 37.

    Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

  • 38.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421 (2009).

  • Source