• 1.

    Li, Z. et al. Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment. Phys. Rev. B 91, 094429 (2015).

  • 2.

    Yoo, J. M., Kang, J. H. & Hong, B. H. Graphene-based nanomaterials for versatile imaging studies. Chem. Soc. Rev. 44, 4835–4852 (2015).

  • 3.

    Bartelmess, J., Quinn, S. J. & Giordani, S. Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chem. Soc. Rev. 44, 4672–4698 (2015).

  • 4.

    Miao, W. et al. Image-guided synergistic photothermal therapy using photoresponsive imaging agent-loaded graphene-based nanosheets. J. Control. Release 211, 28–36 (2015).

  • 5.

    Chen, D., Dougherty, C. A., Zhu, K. & Hong, H. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. J. Control. Release 210, 230–245 (2015).

  • 6.

    Orecchioni, M., Cabizza, R., Bianco, A. & Delogu, L. G. Graphene as Cancer Theranostic Tool: Progress and Future Challenges. Theranostics 5, 710–723 (2015).

  • 7.

    Liu, J., Dong, J., Zhang, T. & Peng, Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J. Control. Release 286, 64–73 (2018).

  • 8.

    Ding, X., Liu, H. & Fan, Y. Graphene-Based Materials in Regenerative Medicine. Adv. Healthc. Mater. 4, 1451–1468 (2015).

  • 9.

    Menaa, F., Abdelghani, A. & Menaa, B. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. J. Tissue Eng. Regen. Med. 9, 1321–1338 (2015).

  • 10.

    Wang, Z. & Dai, Z. Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale 7, 6420–6431 (2015).

  • 11.

    Heerema, S. J. & Dekker, C. Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016).

  • 12.

    Yang, K., Feng, L. & Liu, Z. The advancing uses of nano-graphene in drug delivery. Expert Opin. Drug Deliv. 12, 601–612 (2015).

  • 13.

    Muthoosamy, K., Bai, R. & Manickam, S. Graphene and Graphene Oxide as a Docking Station for Modern Drug Delivery System. Curr. Drug Deliv. 11, 701–718 (2014).

  • 14.

    Chatterjee, N. et al. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO). Nanotoxicology 11, 76–86 (2017).

  • 15.

    Nirmal, N. K., Awasthi, K. K. & John, P. J. Effects of Nano-Graphene Oxide on Testis, Epididymis and Fertility of Wistar Rats. Basic Clin. Pharmacol. Toxicol. 121, 202–210 (2017).

  • 16.

    Souza, J. P., Venturini, F. P., Santos, F. & Zucolotto, V. Chronic toxicity in Ceriodaphnia dubia induced by graphene oxide. Chemosphere 190, 218–224 (2018).

  • 17.

    Asghar, W. et al. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm. Sci. Rep. 6, 30270 (2016).

  • 18.

    Mesarič, T. et al. Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus). Aquat. Toxicol. 163, 158–166 (2015).

  • 19.

    Liang, S., Xu, S., Zhang, D., He, J. & Chu, M. Reproductive toxicity of nanoscale graphene oxide in male mice. Nanotoxicology 9, 92–105 (2015).

  • 20.

    Bernabò, N. et al. Graphene oxide affects in vitro fertilization outcome by interacting with sperm membrane in an animal model. Carbon N. Y. 129, 428–437 (2018).

  • 21.

    Yanagimachi, R. Fertility of mammalian spermatozoa: its development and relativity. Zygote 2, 371–372 (1994).

  • 22.

    Suarez, S. S. Regulation of sperm storage and movement in the mammalian oviduct. Int. J. Dev. Biol. 52, 455–462 (2008).

  • 23.

    Romarowski, A. et al. PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis. Dev. Biol. 405, 237–249 (2015).

  • 24.

    Barboni, B. et al. Type-1 cannabinoid receptors reduce membrane fluidity of capacitated boar sperm by impairing their activation by bicarbonate. PLoS One 6, e23038 (2011).

  • 25.

    Boerke, A. et al. Involvement of bicarbonate-induced radical signaling in oxysterol formation and sterol depletion of capacitating mammalian sperm during in vitro fertilization. Biol. Reprod. 88, 21 (2013).

  • 26.

    Bernabò, N. et al. Endocannabinoid-binding CB1 and TRPV1 receptors as modulators of sperm capacitation. Commun. Integr. Biol. 5, 68–70 (2012).

  • 27.

    Gadella, B. M. & Harrison, R. A. P. Capacitation induces cyclic adenosine 3′,5′-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells. Biol. Reprod. 67, 340–350 (2002).

  • 28.

    Gadella, B. M. & Luna, C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology 81, 74–84 (2014).

  • 29.

    Bernabò, N. et al. The role of actin in capacitation-related signaling: an in silico and in vitro study. BMC Syst. Biol. 5, 47 (2011).

  • 30.

    Daniel, L. et al. Regulation of the sperm EGF receptor by ouabain leads to initiation of the acrosome reaction. Dev. Biol. 344, 650–657 (2010).

  • 31.

    Cohen, G., Rubinstein, S., Gur, Y. & Breitbart, H. Crosstalk between protein kinase A and C regulates phospholipase D and F-actin formation during sperm capacitation. Dev. Biol. 267, 230–241 (2004).

  • 32.

    Stival, C. et al. In Advances in anatomy, embryology, and cell biology 220, 93–106 (2016).

  • 33.

    Rajamanickam, G. D., Kastelic, J. P. & Thundathil, J. C. Na/K-ATPase regulates bovine sperm capacitation through raft- and non-raft-mediated signaling mechanisms. Mol. Reprod. Dev. 84, 1168–1182 (2017).

  • 34.

    Gadella, B. M. Sperm membrane physiology and relevance for fertilization. Anim. Reprod. Sci. 107, 229–236 (2008).

  • 35.

    Hossain, M. S., Afrose, S., Sawada, T., Hamano, K. & Tsujii, H. Metabolism of exogenous fatty acids, fatty acid-mediated cholesterol efflux, PKA and PKC pathways in boar sperm acrosome reaction. Reprod. Med. Biol. 9, 23–31 (2010).

  • 36.

    Viviani Anselmi, C. et al. Fatty acid percentage in erythrocyte membranes of atrial flutter/fibrillation patients and controls. J. Interv. Card. Electrophysiol. 27, 95–99 (2010).

  • 37.

    Mendeluk, G. R., Cohen, M. I., Ferreri, C. & Chatgilialoglu, C. Nutrition and Reproductive Health: Sperm versus Erythrocyte Lipidomic Profile and ω −3 Intake. J. Nutr. Metab. 2015, 1–8 (2015).

  • 38.

    Leahy, T. & Gadella, B. M. New insights into the regulation of cholesterol efflux from the sperm membrane. Asian J. Androl. 17, 561–7 (2015).

  • 39.

    Li, S. & Winuthayanon, W. Oviduct: roles in fertilization and early embryo development. J. Endocrinol. 232, R1–R26 (2017).

  • 40.

    Avilés, M., Gutiérrez-Adán, A. & Coy, P. Oviductal secretions: will they be key factors for the future ARTs? MHR Basic Sci. Reprod. Med. 16, 896–906 (2010).

  • 41.

    Oddi, S. et al. Functional characterization of putative cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J. Neurochem. 116, 858–865 (2011).

  • 42.

    Sanchez, S. A., Gunther, G., Tricerri, M. A. & Gratton, E. Methyl-β-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles. J. Membr. Biol. 241, 1–10 (2011).

  • 43.

    van Gestel, R. A., Helms, J. B., Brouwers, J. F. H. M. & Gadella, B. M. Effects of methyl-β-cyclodextrin-mediated cholesterol depletion in porcine sperm compared to somatic cells. Mol. Reprod. Dev. 72, 386–395 (2005).

  • 44.

    Botto, L., Bernabò, N., Palestini, P. & Barboni, B. Bicarbonate Induces Membrane Reorganization and CBR1 and TRPV1 Endocannabinoid Receptor Migration in Lipid Microdomains in Capacitating Boar Spermatozoa. J. Membr. Biol. 238, 33–41 (2010).

  • 45.

    Zhang, L., Xu, B. & Wang, X. Cholesterol Extraction from Cell Membrane by Graphene Nanosheets: A Computational Study. J. Phys. Chem. B 120, 957–964 (2016).

  • 46.

    Fabbro, A. et al. Graphene-Based Interfaces Do Not Alter Target Nerve Cells. ACS Nano 10, 615–623 (2016).

  • 47.

    Bach, D. & Wachtel, E. Phospholipid/cholesterol model membranes: formation of cholesterol crystallites. Biochim. Biophys. Acta – Biomembr. 1610, 187–197 (2003).

  • 48.

    Benesch, M. G. K. & McElhaney, R. N. A comparative differential scanning calorimetry study of the effects of cholesterol and various oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. Chem. Phys. Lipids 195, 21–33 (2016).

  • 49.

    Inoue, T., Yanagihara, S., Misono, Y. & Suzuki, M. Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer: saturated versus unsaturated fatty acids. Chem. Phys. Lipids 109, 117–133 (2001).

  • 50.

    Breitbart, H. & Naor, Z. In Male Sterility and Motility Disorders 45–53, https://doi.org/10.1007/978-1-4612-1522-6_4 (Springer New York, 1999).

  • 51.

    Breitbart, H., Cohen, G. & Rubinstein, S. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction 129, 263–268 (2005).

  • 52.

    Brener, E. et al. Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol. Reprod. 68, 837–45 (2003).

  • 53.

    Baldi, E., Luconi, M., Bonaccorsi, L., Krausz, C. & Forti, G. Human sperm activation during capacitation and acrosome reaction: role of calcium, protein phosphorylation and lipid remodelling pathways. Front. Biosci. 1, d189–205 (1996).

  • 54.

    Bejarano, I. et al. In Male Infertility, https://doi.org/10.5772/32617 (InTech, 2012).

  • 55.

    Hashemi, E. et al. Cyto and genotoxicities of graphene oxide and reduced graphene oxide sheets on spermatozoa. RSC Adv. 4, 27213 (2014).

  • 56.

    Akhavan, O., Ghaderi, E. & Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33, 8017–8025 (2012).

  • 57.

    Akhavan, O. & Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano 4, 5731–5736 (2010).

  • 58.

    López-Úbeda, R., García-Vázquez, F., Gadea, J. & Matás, C. Oviductal epithelial cells selected boar sperm according to their functional characteristics. Asian J. Androl. 19, 396 (2017).

  • 59.

    Yang, X. et al. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. Environ. Toxicol. tox.22695, https://doi.org/10.1002/tox.22695 (2018).

  • 60.

    Maccarrone, M. et al. Characterization of the endocannabinoid system in boar spermatozoa and implications for sperm capacitation and acrosome reaction. J. Cell Sci. 118, 4393–4404 (2005).

  • 61.

    Bernabò, N., Pistilli, M. G., Mattioli, M. & Barboni, B. Role of TRPV1 channels in boar spermatozoa acquisition of fertilizing ability. Mol. Cell. Endocrinol. 323, 224–231 (2010).

  • 62.

    Tettamanti, G., Bonali, F., Marchesini, S. & Zambotti, V. A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim. Biophys. Acta 296, 160–70 (1973).

  • 63.

    Klem, S., Klingler, M., Demmelmair, H. & Koletzko, B. Efficient and Specific Analysis of Red Blood Cell Glycerophospholipid Fatty Acid Composition. PLoS One 7, e33874 (2012).

  • 64.

    Wolf, D. E., Maynard, V. M., McKinnon, C. A. & Melchior, D. L. Lipid domains in the ram sperm plasma membrane demonstrated by differential scanning calorimetry. Proc. Natl. Acad. Sci. USA 87, 6893–6 (1990).

  • 65.

    Blumenthal, D., Goldstien, L., Edidin, M. & Gheber, L. A. Universal Approach to FRAP Analysis of Arbitrary Bleaching Patterns. Sci. Rep. 5, 11655 (2015).

  • Source