• 1.

    Unal, M., Creecy, A. & Nyman, J. S. The Role of Matrix Composition in the Mechanical Behavior of Bone. Current Osteoporosis Reports 16, 205–215, https://doi.org/10.1007/s11914-018-0433-0 (2018).

  • 2.

    McCalden, R. W., McGeough, J. A. & Barker, M. B. Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. JBJS 75, 1193–1205 (1993).

  • 3.

    Wang, X., Shen, X., Li, X. & Agrawal, C. M. Age-related changes in the collagen network and toughness of bone. Bone 31, 1–7 (2002).

  • 4.

    Currey, J. D., Brear, K. & Zioupos, P. The effects of ageing and changes in mineral content in degrading the toughness of human femora. Journal of biomechanics 29, 257–260 (1996).

  • 5.

    Yerramshetty, J. S. & Akkus, O. The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42, 476–482 (2008).

  • 6.

    Wang, X. et al. Effect of collagen denaturation on the toughness of bone. Clinical Orthopaedics and Related Research® 371, 228–239 (2000).

  • 7.

    Granke, M., Makowski, A. J., Uppuganti, S., Does, M. D. & Nyman, J. S. Identifying novel clinical surrogates to assess human bone fracture toughness. Journal of Bone and Mineral Research 30, 1290–1300 (2015).

  • 8.

    Dalén, N., Hellström, L.-G. & Jacobson, B. Bone mineral content and mechanical strength of the femoral neck. Acta Orthopaedica Scandinavica 47, 503–508 (1976).

  • 9.

    Mayhew, P. M. et al. Relation between age, femoral neck cortical stability, and hip fracture risk. The Lancet 366, 129–135 (2005).

  • 10.

    Singer, K., Edmondston, S., Day, R., Breidahl, P. & Price, R. Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region. Bone 17, 167–174 (1995).

  • 11.

    Vesterby, A. et al. Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone 12, 219–224 (1991).

  • 12.

    Manhard, M. K., Nyman, J. S. & Does, M. D. Advances in imaging approaches to fracture risk evaluation. Translational Research 181, 1–14 (2017).

  • 13.

    Johannesdottir, F., Allaire, B. & Bouxsein, M. L. Fracture Prediction by Computed Tomography and Finite Element Analysis: Current and Future Perspectives. Current osteoporosis reports, 1–12 (2018).

  • 14.

    Kanis, J. A., McCloskey, E., Johansson, H., Oden, A. & Leslie, W. D. FRAX® with and without bone mineral density. Calcified Tissue Int 90, 1–13 (2012).

  • 15.

    Donnelly, E. Methods for assessing bone quality: a review. Clinical Orthopaedics and Related Research® 469, 2128–2138 (2011).

  • 16.

    Mandair, G. S. & Morris, M. D. Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Reports 4 (2015).

  • 17.

    Unal, M., Yang, S. & Akkus, O. Molecular spectroscopic identification of the water compartments in bone. Bone 67, 228–236, https://doi.org/10.1016/j.bone.2014.07.021 (2014).

  • 18.

    Unal, M. & Akkus, O. Raman spectral classification of mineral- and collagen-bound water’s associations to elastic and post-yield mechanical properties of cortical bone. Bone 81, 315–326, https://doi.org/10.1016/j.bone.2015.07.024 (2015).

  • 19.

    Buckley, K. et al. Towards the in vivo prediction of fragility fractures with Raman spectroscopy. Journal of Raman Spectroscopy 46, 610–618 (2015).

  • 20.

    Diez-Perez, A. et al. Recommendations for a standard procedure to assess cortical bone at the tissue-level in vivo using impact microindentation. Bone reports 5, 181–185 (2016).

  • 21.

    Manhard, M. K. et al. MRI-derived bound and pore water concentrations as predictors of fracture resistance. Bone 87, 1–10 (2016).

  • 22.

    Paschalis, E., Gamsjaeger, S. & Klaushofer, K. Vibrational spectroscopic techniques to assess bone quality. Osteoporosis Int, 1–17 (2017).

  • 23.

    Paschalis, E. et al. Spectroscopic Characterization of Collagen Cross‐Links in Bone. Journal of Bone and Mineral Research 16, 1821–1828 (2001).

  • 24.

    Unal, M., Jung, H. & Akkus, O. Novel Raman Spectroscopic Biomarkers Indicate That Postyield Damage Denatures Bone’s Collagen. Journal of Bone and Mineral Research 31, 1015–1025, https://doi.org/10.1002/jbmr.2768 (2016).

  • 25.

    Morris, M. D. & Mandair, G. S. Raman assessment of bone quality. Clinical Orthopaedics and Related Research® 469, 2160–2169 (2011).

  • 26.

    Akkus, O., Adar, F. & Schaffler, M. B. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34, 443–453, https://doi.org/10.1016/j.bone.2003.11.003 (2004).

  • 27.

    Bi, X. et al. Raman and mechanical properties correlate at whole bone-and tissue-levels in a genetic mouse model. Journal of biomechanics 44, 297–303 (2011).

  • 28.

    Makowski, A. J. et al. Applying Full Spectrum Analysis to a Raman Spectroscopic Assessment of Fracture Toughness of Human Cortical Bone. Applied spectroscopy 71, 2385–2394, https://doi.org/10.1177/0003702817718149 (2017).

  • 29.

    Matousek, P. et al. Noninvasive Raman spectroscopy of human tissue in vivo. Applied spectroscopy 60, 758–763 (2006).

  • 30.

    Draper, E. R. et al. Novel Assessment of Bone Using Time‐Resolved Transcutaneous Raman Spectroscopy. Journal of Bone and Mineral Research 20, 1968–1972 (2005).

  • 31.

    Schulmerich, M. V. et al. Transcutaneous Raman spectroscopy of murine bone in vivo. Applied spectroscopy 63, 286–295 (2009).

  • 32.

    Okagbare, P. I., Morris, M. D., Begun, D., Goldstein, S. A. & Tecklenburg, M. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality. Journal of biomedical optics 17, 090502 (2012).

  • 33.

    Maher, J. R., Inzana, J. A., Awad, H. A. & Berger, A. J. Overconstrained library-based fitting method reveals age-and disease-related differences in transcutaneous Raman spectra of murine bones. Journal of biomedical optics 18, 077001 (2013).

  • 34.

    Demers, J.-L. H., Esmonde-White, F. W., Esmonde-White, K. A., Morris, M. D. & Pogue, B. W. Next-generation Raman tomography instrument for non-invasive in vivo bone imaging. Biomedical optics express 6, 793–806 (2015).

  • 35.

    Buckley, K. et al. Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy. IBMS BoneKEy 11, https://doi.org/10.1038/bonekey.2014.97 (2014).

  • 36.

    Nyman, J. S., Granke, M., Singleton, R. C. & Pharr, G. M. Tissue-level mechanical properties of bone contributing to fracture risk. Current osteoporosis reports 14, 138–150 (2016).

  • 37.

    Launey, M. E., Buehler, M. J. & Ritchie, R. O. On the Mechanistic Origins of Toughness in Bone. Annual Review of Materials Research 40, 25–53, https://doi.org/10.1146/annurev-matsci-070909-104427 (2010).

  • 38.

    Fritsch, A., Hellmich, C. & Dormieux, L. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. Journal of theoretical biology 260, 230–252 (2009).

  • 39.

    Gupta, H. et al. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. Journal of the mechanical behavior of biomedical materials 28, 366–382 (2013).

  • 40.

    Zimmermann, E. A. et al. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proceedings of the National Academy of Sciences 108, 14416–14421 (2011).

  • 41.

    Diab, T. & Vashishth, D. Effects of damage morphology on cortical bone fragility. Bone 37, 96–102 (2005).

  • 42.

    Nalla, R. K., Kruzic, J. J., Kinney, J. H. & Ritchie, R. O. Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials 26, 217–231 (2005).

  • 43.

    Koester, K. J., Ager Iii, J. & Ritchie, R. The true toughness of human cortical bone measured with realistically short cracks. Nature materials 7, 672 (2008).

  • 44.

    Peterlik, H., Roschger, P., Klaushofer, K. & Fratzl, P. From brittle to ductile fracture of bone. Nature materials 5, 52 (2006).

  • 45.

    Flanagan, C. D., Unal, M., Akkus, O. & Rimnac, C. M. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage. J Mech Behav Biomed Mater 75, 314–321, https://doi.org/10.1016/j.jmbbm.2017.07.016 (2017).

  • 46.

    McNerny, E., Gong, B., Morris, M. D. & Kohn, D. H. Bone Fracture Toughness and Strength Correlate with Collagen Cross‐Link Maturity in a Dose‐Controlled Lathyrism Mouse Model. Journal of Bone and Mineral Research 30, 455–464 (2015).

  • 47.

    Ager, J. W., Nalla, R. K., Breeden, K. L. & Ritchie, R. O. Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone. Journal of biomedical optics 10, 034012–0340128 (2005).

  • 48.

    Buckley, K., Matousek, P., Parker, A. W. & Goodship, A. E. Raman spectroscopy reveals differences in collagen secondary structure which relate to the levels of mineralisation in bones that have evolved for different functions. Journal of Raman Spectroscopy 43, 1237–1243 (2012).

  • 49.

    Gong, B., Oest, M. E., Mann, K. A., Damron, T. A. & Morris, M. D. Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation. Bone 57, 252–258 (2013).

  • 50.

    Barth, H. D. et al. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials 32, 8892–8904 (2011).

  • 51.

    Creecy, A. et al. Low bone toughness in the TallyHO model of juvenile type 2 diabetes does not worsen with age. Bone 110, 204–214, https://doi.org/10.1016/j.bone.2018.02.005 (2018).

  • 52.

    Unal, M. et al. Assessing Glycation-mediated Changes in Human Cortical Bone with Raman Spectroscopy. Journal of Biophotonics Accepted Author Manuscript, https://doi.org/10.1002/jbio.201700352 (2018).

  • 53.

    Makowski, A. J., Patil, C. A., Mahadevan-Jansen, A. & Nyman, J. S. Polarization control of Raman spectroscopy optimizes the assessment of bone tissue. Journal of biomedical optics 18, 055005 (2013).

  • 54.

    Pence, I. & Mahadevan-Jansen, A. Clinical instrumentation and applications of Raman spectroscopy. Chemical Society Reviews 45, 1958–1979 (2016).

  • 55.

    Burr, D. The contribution of the organic matrix to bone’s material properties. Bone 31, 8–11 (2002).

  • 56.

    Zioupos, P. Ageing human bone: factors affecting its biomechanical properties and the role of collagen. Journal of Biomaterials Applications 15, 187–229 (2001).

  • 57.

    Granke, M., Makowski, A. J., Uppuganti, S. & Nyman, J. S. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone. Journal of biomechanics 49, 2748–2755 (2016).

  • 58.

    Willett, T. L., Dapaah, D. Y., Uppuganti, S., Granke, M. & Nyman, J. S. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone (2018).

  • 59.

    Katsamenis, O. L., Jenkins, T. & Thurner, P. J. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level. Bone 76, 158–168 (2015).

  • 60.

    Hammond, M. A., Gallant, M. A., Burr, D. B. & Wallace, J. M. Nanoscale changes in collagen are reflected in physical and mechanical properties of bone at the microscale in diabetic rats. Bone 60, 26–32 (2014).

  • Source